Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 12100, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31417108

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

2.
Sci Rep ; 9(1): 3609, 2019 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-30837624

RESUMO

The Tyrrhenian basin serves as a natural laboratory for back-arc basin studies in the Mediterranean region. Yet, little is known about the crust-uppermost mantle structure beneath the basin and its margins. Here, we present a new 3D shear-wave velocity model and Moho topography map for the Tyrrhenian basin and its margins using ambient noise cross-correlations. We apply a self-parameterized Bayesian inversion of Rayleigh group and phase velocity dispersions to estimate the lateral variation of shear velocity and its uncertainty as a function of depth (down to 100 km). Results reveal the presence of a broad low velocity zone between 40 and 80 km depth affecting much of the Tyrrhenian basin's uppermost mantle structure and its extension mimics the paleogeographic reconstruction of the Calabrian arc in time. We interpret the low-velocity structure as the possible source of Mid-Ocean Ridge Basalts- and Ocean Island Basalts- type magmatic rocks found in the southern Tyrrhenian basin. At crustal depths, our results support an exhumed mantle basement rather than an oceanic basement below the Vavilov basin. The 3D crust-uppermost mantle structure supports a present-day geodynamics with a predominant Africa-Eurasia convergence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...