Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 7(29)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34272238

RESUMO

Extensive exploration of a protein's sequence space for improved or new molecular functions requires in vivo evolution with large populations. But disentangling the evolution of a target protein from the rest of the proteome is challenging. Here, we designed a protein complex of a targeted artificial DNA replisome (TADR) that operates in live cells to processively replicate one strand of a plasmid with errors. It enhanced mutation rates of the target plasmid up to 2.3 × 105-fold with only a 78-fold increase in off-target mutagenesis. It was used to evolve itself to increase error rate and increase the efficiency of an efflux pump while simultaneously expanding the substrate repertoire. TADR enables multiple simultaneous substitutions to discover functions inaccessible by accumulating single substitutions, affording potential for solving hard problems in molecular evolution and developing biologic drugs and industrial catalysts.


Assuntos
DNA Polimerase Dirigida por DNA , Complexos Multienzimáticos , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Mutagênese , Plasmídeos/genética
2.
Front Microbiol ; 7: 828, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27375567

RESUMO

Indole-3-acetic acid (IAA) is an auxin produced by terrestrial plants which influences development through a variety of cellular mechanisms, such as altering cell orientation, organ development, fertility, and cell elongation. IAA is also produced by bacterial pathogens and symbionts of plants and algae, allowing them to manipulate growth and development of their host. They do so by either producing excess exogenous IAA or hijacking the IAA biosynthesis pathway of their host. The endogenous production of IAA by algae remains contentious. Using Emiliania huxleyi, a globally abundant marine haptophyte, we investigated the presence and potential role of IAA in algae. Homologs of genes involved in several tryptophan-dependent IAA biosynthesis pathways were identified in E. huxleyi. This suggests that this haptophyte can synthesize IAA using various precursors derived from tryptophan. Addition of L-tryptophan to E. huxleyi stimulated IAA production, which could be detected using Salkowski's reagent and GC × GC-TOFMS in the C cell type (coccolith bearing), but not in the N cell type (bald). Various concentrations of IAA were exogenously added to these two cell types to identify a physiological response in E. huxleyi. The N cell type, which did not produce IAA, was more sensitive to it, showing an increased variation in cell size, membrane permeability, and a corresponding increase in the photosynthetic potential quantum yield of Photosystem II (PSII). A roseobacter (bacteria commonly associated with E. huxleyi) Ruegeria sp. R11, previously shown to produce IAA, was co-cultured with E. huxleyi C and N cells. IAA could not be detected from these co-cultures, and even when stimulated by addition of L-tryptophan, they produced less IAA than axenic C type culture similarly induced. This suggests that IAA plays a novel role signaling between different E. huxleyi cell types, rather than between a bacteria and its algal host.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA