Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(41): eadh3150, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37824621

RESUMO

Research on coronavirus disease 2019 vaccination in immune-deficient/disordered people (IDP) has focused on cancer and organ transplantation populations. In a prospective cohort of 195 IDP and 35 healthy volunteers (HV), antispike immunoglobulin G (IgG) was detected in 88% of IDP after dose 2, increasing to 93% by 6 months after dose 3. Despite high seroconversion, median IgG levels for IDP never surpassed one-third that of HV. IgG binding to Omicron BA.1 was lowest among variants. Angiotensin-converting enzyme 2 pseudo-neutralization only modestly correlated with antispike IgG concentration. IgG levels were not significantly altered by receipt of different messenger RNA-based vaccines, immunomodulating treatments, and prior severe acute respiratory syndrome coronavirus 2 infections. While our data show that three doses of coronavirus disease 2019 vaccinations induce antispike IgG in most IDP, additional doses are needed to increase protection. Because of the notably reduced IgG response to Omicron BA.1, the efficacy of additional vaccinations, including bivalent vaccines, should be studied in this population.


Assuntos
COVID-19 , Imunoglobulina G , Humanos , Vacinas contra COVID-19 , Estudos Prospectivos , COVID-19/prevenção & controle , Imunidade
2.
bioRxiv ; 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37425787

RESUMO

Centromeres are genomic regions that coordinate accurate chromosomal segregation during mitosis and meiosis. Yet, despite their essential function, centromeres evolve rapidly across eukaryotes. Centromeres are often the sites of chromosomal breaks which contribute to genome shuffling and promote speciation by inhibiting gene flow. How centromeres form in strongly host-adapted fungal pathogens has yet to be investigated. Here, we characterized the centromere structures in closely related species of mammalian-specific pathogens of the fungal phylum of Ascomycota. Methods allowing reliable continuous culture of Pneumocystis species do not currently exist, precluding genetic manipulation. CENP-A, a variant of histone H3, is the epigenetic marker that defines centromeres in most eukaryotes. Using heterologous complementation, we show that the Pneumocystis CENP-A ortholog is functionally equivalent to CENP-ACnp1 of Schizosaccharomyces pombe. Using organisms from a short-term in vitro culture or infected animal models and ChIP-seq, we identified centromeres in three Pneumocystis species that diverged ~100 million years ago. Each species has a unique short regional centromere (< 10kb) flanked by heterochromatin in 16-17 monocentric chromosomes. They span active genes and lack conserved DNA sequence motifs and repeats. CENP-C, a scaffold protein that links the inner centromere to the kinetochore appears dispensable in one species, suggesting a kinetochore rewiring. Despite the loss of DNA methyltransferases, 5-methylcytosine DNA methylation occurs in these species, though not related to centromere function. These features suggest an epigenetic specification of centromere function.

3.
Nat Commun ; 14(1): 4082, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37429841

RESUMO

Three types of DNA methyl modifications have been detected in bacterial genomes, and mechanistic studies have demonstrated roles for DNA methylation in physiological functions ranging from phage defense to transcriptional control of virulence and host-pathogen interactions. Despite the ubiquity of methyltransferases and the immense variety of possible methylation patterns, epigenomic diversity remains unexplored for most bacterial species. Members of the Bacteroides fragilis group (BFG) reside in the human gastrointestinal tract as key players in symbiotic communities but also can establish anaerobic infections that are increasingly multi-drug resistant. In this work, we utilize long-read sequencing technologies to perform pangenomic (n = 383) and panepigenomic (n = 268) analysis of clinical BFG isolates cultured from infections seen at the NIH Clinical Center over four decades. Our analysis reveals that single BFG species harbor hundreds of DNA methylation motifs, with most individual motif combinations occurring uniquely in single isolates, implying immense unsampled methylation diversity within BFG epigenomes. Mining of BFG genomes identified more than 6000 methyltransferase genes, approximately 1000 of which were associated with intact prophages. Network analysis revealed substantial gene flow among disparate phage genomes, implying a role for genetic exchange between BFG phages as one of the ultimate sources driving BFG epigenome diversity.


Assuntos
Bacteriófagos , Metiltransferases , Humanos , Metiltransferases/genética , Bacteroides fragilis/genética , Epigenômica , Metilação de DNA/genética , Bacteriófagos/genética , Bacteroides , Epigênese Genética
4.
PLoS Biol ; 20(11): e3001878, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36399436

RESUMO

Hypermutation due to DNA mismatch repair (MMR) deficiencies can accelerate the development of antibiotic resistance in Pseudomonas aeruginosa. Whether hypermutators generate resistance through predominantly similar molecular mechanisms to wild-type (WT) strains is not fully understood. Here, we show that MMR-deficient P. aeruginosa can evolve resistance to important broad-spectrum cephalosporin/beta-lactamase inhibitor combination antibiotics through novel mechanisms not commonly observed in WT lineages. Using whole-genome sequencing (WGS) and transcriptional profiling of isolates that underwent in vitro adaptation to ceftazidime/avibactam (CZA), we characterized the detailed sequence of mutational and transcriptional changes underlying the development of resistance. Surprisingly, MMR-deficient lineages rapidly developed high-level resistance (>256 µg/mL) largely without corresponding fixed mutations or transcriptional changes in well-established resistance genes. Further investigation revealed that these isolates had paradoxically generated an early inactivating mutation in the mexB gene of the MexAB-OprM efflux pump, a primary mediator of CZA resistance in P. aeruginosa, potentially driving an evolutionary search for alternative resistance mechanisms. In addition to alterations in a number of genes not known to be associated with resistance, 2 mutations were observed in the operon encoding the RND efflux pump MexVW. These mutations resulted in a 4- to 6-fold increase in resistance to ceftazidime, CZA, cefepime, and ceftolozane-tazobactam when engineered into a WT strain, demonstrating a potentially important and previously unappreciated mechanism of resistance to these antibiotics in P. aeruginosa. Our results suggest that MMR-deficient isolates may rapidly evolve novel resistance mechanisms, sometimes with complex dynamics that reflect gene inactivation that occurs with hypermutation. The apparent ease with which hypermutators may switch to alternative resistance mechanisms for which antibiotics have not been developed may carry important clinical implications.


Assuntos
Pseudomonas aeruginosa , Inibidores de beta-Lactamases , Inibidores de beta-Lactamases/farmacologia , Pseudomonas aeruginosa/genética , Ceftazidima/farmacologia , Cefalosporinas/farmacologia , Antibacterianos/farmacologia
5.
Open Forum Infect Dis ; 9(9): ofac472, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36196300

RESUMO

Mycoplasma orale is a rare cause of invasive infection in immunodeficient hosts. Phosphatidylinositol 3-kinase, regulatory subunit 1 (PI3KR1) mutations predispose patients to sinopulmonary infections, alongside bronchiectasis autoimmunity and lymphoproliferation. We report 2 cases of PI3KR1 deficiency with invasive M orale and effective treatment options.

6.
Commun Biol ; 4(1): 305, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33686174

RESUMO

Pneumocystis jirovecii, the fungal agent of human Pneumocystis pneumonia, is closely related to macaque Pneumocystis. Little is known about other Pneumocystis species in distantly related mammals, none of which are capable of establishing infection in humans. The molecular basis of host specificity in Pneumocystis remains unknown as experiments are limited due to an inability to culture any species in vitro. To explore Pneumocystis evolutionary adaptations, we have sequenced the genomes of species infecting macaques, rabbits, dogs and rats and compared them to available genomes of species infecting humans, mice and rats. Complete whole genome sequence data enables analysis and robust phylogeny, identification of important genetic features of the host adaptation, and estimation of speciation timing relative to the rise of their mammalian hosts. Our data reveals insights into the evolution of P. jirovecii, the sole member of the genus able to infect humans.


Assuntos
Evolução Molecular , Proteínas Fúngicas/genética , Genoma Fúngico , Pneumocystis carinii/genética , Pneumonia por Pneumocystis/microbiologia , Animais , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Filogenia , Pneumocystis carinii/classificação , Pneumocystis carinii/patogenicidade , Especificidade da Espécie
7.
J Infect Dis ; 224(3): 453-457, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-33336253

RESUMO

Distinguishing disseminated Mycobacterium marinum from multifocal cutaneous disease in persons with human immunodeficiency virus/AIDS can present a diagnostic challenge, especially in the context of immune reconstitution inflammatory syndrome (IRIS). In this work, we demonstrate the utility of flow cytometry and whole genome sequencing (WGS) to diagnose disseminated M. marinum unmasked by IRIS following initiation of antiretroviral therapy. Flow cytometry demonstrated robust cytokine production by CD4 T cells in response to stimulation with M. marinum lysate. WGS of isolates from distinct lesions was consistent with clonal dissemination, supporting that preexisting disseminated M. marinum disease was uncovered by inflammatory manifestations, consistent with unmasking mycobacterial IRIS.


Assuntos
Síndrome Inflamatória da Reconstituição Imune , Mycobacterium marinum , Terapia Antirretroviral de Alta Atividade , HIV , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Humanos , Síndrome Inflamatória da Reconstituição Imune/diagnóstico , Síndrome Inflamatória da Reconstituição Imune/tratamento farmacológico
9.
J Mol Diagn ; 22(10): 1272-1279, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32688055

RESUMO

The glycoprotein encoded by the ACKR1 gene expresses the Duffy blood group antigens and is a receptor for malaria parasites. We recently described 18 long-range ACKR1 alleles in an autochthonous population of a malaria endemic region. Extending this work, we sequenced the gene in a 53-sample repository established by the US Food and Drug Administration (FDA) as reference reagents for blood group genotyping. The FDA samples have been characterized for 19 genes; however, long-range haplotype information for these genes, including ACKR1, was lacking. We used a hybrid approach, novel for this type of gene, to characterize ACKR1 by combining two next-generation sequencing technologies, the short-read massively parallel sequencing and the long-read nanopore sequencing. The expedient integration of data from both next-generation sequencing systems were necessary and sufficient to allow determination of all 25 long-range ACKR1 alleles found in the 53 samples accurately. All 25 alleles identified in our current FDA cohort were novel and, unexpectedly, none had been observed among the 18 alleles in our previous study. The alleles will be useful for validation, calibration, and proficiency testing of red cell genotyping. The lack of any overlap between the ACKR1 alleles in the two studies documents differences in mutation rate and recombination frequency among populations. The exact haplotype and their interethnic or interpopulation dissimilarities can influence disease susceptibility and therapy.


Assuntos
Alelos , Pareamento de Bases/genética , Antígenos de Grupos Sanguíneos/genética , Sistema do Grupo Sanguíneo Duffy/genética , Técnicas de Genotipagem/normas , Receptores de Superfície Celular/genética , United States Food and Drug Administration , Sequência de Bases , Etiópia , Humanos , Polimorfismo de Nucleotídeo Único/genética , Padrões de Referência , Estados Unidos
10.
mBio ; 10(5)2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31530672

RESUMO

Strains of Pseudomonas aeruginosa with deficiencies in DNA mismatch repair have been studied in the context of chronic infection, where elevated mutational rates ("hypermutation") may facilitate the acquisition of antimicrobial resistance. Whether P. aeruginosa hypermutation can also play an adaptive role in the more dynamic context of acute infection remains unclear. In this work, we demonstrate that evolved mismatch repair deficiencies may be exploited by P. aeruginosa to facilitate rapid acquisition of antimicrobial resistance in acute infection, and we directly document rapid clonal succession by such a hypermutating lineage in a patient. Whole-genome sequencing (WGS) was performed on nine serially cultured blood and respiratory isolates from a patient in whom ceftazidime-avibactam (CZA) resistance emerged in vivo over the course of days. The CZA-resistant clone was differentiated by 14 mutations, including a gain-of-function G183D substitution in the PDC-5 chromosomal AmpC cephalosporinase conferring CZA resistance. This lineage also contained a substitution (R656H) at a conserved position in the ATPase domain of the MutS mismatch repair (MMR) protein, and elevated mutational rates were confirmed by mutational accumulation experiments with WGS of evolved lineages in conjunction with rifampin resistance assays. To test whether MMR-deficient hypermutation could facilitate rapid acquisition of CZA resistance, in vitro adaptive evolution experiments were performed with a mutS-deficient strain. These experiments demonstrated rapid hypermutation-facilitated acquisition of CZA resistance compared with the isogenic wild-type strain. Our results suggest a possibly underappreciated role for evolved MMR deficiency in facilitating rapid adaptive evolution of P. aeruginosa in the context of acute infection.IMPORTANCE Antimicrobial resistance in bacteria represents one of the most consequential problems in modern medicine, and its emergence and spread threaten to compromise central advances in the treatment of infectious diseases. Ceftazidime-avibactam (CZA) belongs to a new class of broad-spectrum beta-lactam/beta-lactamase inhibitor combinations designed to treat infections caused by multidrug-resistant bacteria. Understanding the emergence of resistance to this important new drug class is of critical importance. In this work, we demonstrate that evolved mismatch repair deficiency in P. aeruginosa, an important pathogen responsible for significant morbidity and mortality among hospitalized patients, may facilitate rapid acquisition of resistance to CZA in the context of acute infection. These findings are relevant for both diagnosis and treatment of antimicrobial resistance emerging in acute infection in the hypermutator background and additionally have implications for the emergence of more virulent phenotypes.


Assuntos
Compostos Azabicíclicos/farmacologia , Ceftazidima/farmacologia , Reparo de Erro de Pareamento de DNA , Farmacorresistência Bacteriana Múltipla/genética , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Doença Aguda , Antibacterianos/farmacologia , Evolução Molecular Direcionada , Combinação de Medicamentos , Evolução Fatal , Humanos , Testes de Sensibilidade Microbiana , Mutação , Infecções por Pseudomonas/sangue , Infecções por Pseudomonas/microbiologia , Sistema Respiratório/microbiologia , Sequenciamento Completo do Genoma
11.
Genes Dev ; 33(15-16): 1048-1068, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31221665

RESUMO

Fetal hematopoietic stem and progenitor cells (HSPCs) hold promise to cure a wide array of hematological diseases, and we previously found a role for the RNA-binding protein (RBP) Lin28b in respecifying adult HSPCs to resemble their fetal counterparts. Here we show by single-cell RNA sequencing that Lin28b alone was insufficient for complete reprogramming of gene expression from the adult toward the fetal pattern. Using proteomics and in situ analyses, we found that Lin28b (and its closely related paralog, Lin28a) directly interacted with Igf2bp3, another RBP, and their enforced co-expression in adult HSPCs reactivated fetal-like B-cell development in vivo more efficiently than either factor alone. In B-cell progenitors, Lin28b and Igf2bp3 jointly stabilized thousands of mRNAs by binding at the same sites, including those of the B-cell regulators Pax5 and Arid3a as well as Igf2bp3 mRNA itself, forming an autoregulatory loop. Our results suggest that Lin28b and Igf2bp3 are at the center of a gene regulatory network that mediates the fetal-adult hematopoietic switch. A method to efficiently generate induced fetal-like hematopoietic stem cells (ifHSCs) will facilitate basic studies of their biology and possibly pave a path toward their clinical application.


Assuntos
Reprogramação Celular/genética , Proteínas de Ligação a DNA/metabolismo , Redes Reguladoras de Genes , Células-Tronco Hematopoéticas/fisiologia , Proteínas de Ligação a RNA/metabolismo , Animais , Sítios de Ligação , Células Cultivadas , Proteínas de Ligação a DNA/genética , Camundongos , MicroRNAs/metabolismo , Modelos Animais , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética
13.
J Clin Immunol ; 38(6): 712-716, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30039354

RESUMO

PURPOSE: Mendelian suceptibility to mycobacterial disease (MSMD) is a rare primary immunodeficiency predisposing to severe disease caused by mycobacteria and other intracellular pathogens. Delay in diagnosis can have an impact on the patient's prognosis. METHODS: We evaluated the IFN-γ circuit by studying IFN-γ production after mycobacterial challenge as well as IL-12Rß1 expression and STAT4 phosphorylation in response to IL-12p70 stimulation in whole blood of a 6-year-old Peruvian girl with disseminated recurrent mycobacterial infection diagnosed as multidrug-resistant tuberculosis. Genetic studies with Sanger sequencing were used to identify the causative mutation. Microbiological studies based on PCR reactions were used to diagnose the specific mycobacterial species. RESULTS: We identified a homozygous mutation in the IL12RB1 gene (p. Arg211*) causing abolished expression of IL-12Rß1 and IL-12 response. MSMD diagnosis led to a microbiological reevaluation of the patient, revealing a BCG vaccine-related infection instead of tuberculosis. Treatment was then adjusted, with good response. CONCLUSIONS: We report the first Peruvian patient with IL-12Rß1 deficiency. Specific mycobacterial species diagnosis within Mycobacterium tuberculosis complex is still challenging in countries with limited access to PCR-based microbiological diagnostic techniques. Awareness of MSMD warning signs and accurate microbiological diagnosis of mycobacterial infections are of the utmost importance for optimal diagnosis and management of affected patients.


Assuntos
Vacina BCG/imunologia , Suscetibilidade a Doenças , Mycobacterium tuberculosis/imunologia , Receptores de Interleucina-12/deficiência , Tuberculose Resistente a Múltiplos Medicamentos/genética , Tuberculose Resistente a Múltiplos Medicamentos/imunologia , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Criança , Análise Mutacional de DNA , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Mutação , Mycobacterium tuberculosis/efeitos dos fármacos , Peru , Prognóstico , Índice de Gravidade de Doença , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia
14.
mBio ; 9(3)2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29739910

RESUMO

Pneumocystis species are opportunistic mammalian pathogens that cause severe pneumonia in immunocompromised individuals. These fungi are highly host specific and uncultivable in vitro Human Pneumocystis infections present major challenges because of a limited therapeutic arsenal and the rise of drug resistance. To investigate the diversity and demographic history of natural populations of Pneumocystis infecting humans, rats, and mice, we performed whole-genome and large-scale multilocus sequencing of infected tissues collected in various geographic locations. Here, we detected reduced levels of recombination and variations in historical demography, which shape the global population structures. We report estimates of evolutionary rates, levels of genetic diversity, and population sizes. Molecular clock estimates indicate that Pneumocystis species diverged before their hosts, while the asynchronous timing of population declines suggests host shifts. Our results have uncovered complex patterns of genetic variation influenced by multiple factors that shaped the adaptation of Pneumocystis populations during their spread across mammals.IMPORTANCE Understanding how natural pathogen populations evolve and identifying the determinants of genetic variation are central issues in evolutionary biology. Pneumocystis, a fungal pathogen which infects mammals exclusively, provides opportunities to explore these issues. In humans, Pneumocystis can cause a life-threatening pneumonia in immunosuppressed individuals. In analysis of different Pneumocystis species infecting humans, rats, and mice, we found that there are high infection rates and that natural populations maintain a high level of genetic variation despite low levels of recombination. We found no evidence of population structuring by geography. Our comparisons of the times of divergence of these species to their respective hosts suggest that Pneumocystis may have undergone recent host shifts. The results demonstrate that Pneumocystis strains are widely disseminated geographically and provide a new understanding of the evolution of these pathogens.


Assuntos
Pneumocystis/genética , Pneumocystis/isolamento & purificação , Pneumonia por Pneumocystis/microbiologia , Pneumonia por Pneumocystis/veterinária , Doenças dos Roedores/microbiologia , Animais , Variação Genética , Genômica , Humanos , Camundongos , Filogenia , Pneumocystis/classificação , Ratos , Ratos Sprague-Dawley , Recombinação Genética
15.
mBio ; 9(1)2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29437920

RESUMO

The hospital environment is a potential reservoir of bacteria with plasmids conferring carbapenem resistance. Our Hospital Epidemiology Service routinely performs extensive sampling of high-touch surfaces, sinks, and other locations in the hospital. Over a 2-year period, additional sampling was conducted at a broader range of locations, including housekeeping closets, wastewater from hospital internal pipes, and external manholes. We compared these data with previously collected information from 5 years of patient clinical and surveillance isolates. Whole-genome sequencing and analysis of 108 isolates provided comprehensive characterization of blaKPC/blaNDM-positive isolates, enabling an in-depth genetic comparison. Strikingly, despite a very low prevalence of patient infections with blaKPC-positive organisms, all samples from the intensive care unit pipe wastewater and external manholes contained carbapenemase-producing organisms (CPOs), suggesting a vast, resilient reservoir. We observed a diverse set of species and plasmids, and we noted species and susceptibility profile differences between environmental and patient populations of CPOs. However, there were plasmid backbones common to both populations, highlighting a potential environmental reservoir of mobile elements that may contribute to the spread of resistance genes. Clear associations between patient and environmental isolates were uncommon based on sequence analysis and epidemiology, suggesting reasonable infection control compliance at our institution. Nonetheless, a probable nosocomial transmission of Leclercia sp. from the housekeeping environment to a patient was detected by this extensive surveillance. These data and analyses further our understanding of CPOs in the hospital environment and are broadly relevant to the design of infection control strategies in many infrastructure settings.IMPORTANCE Carbapenemase-producing organisms (CPOs) are a global concern because of the morbidity and mortality associated with these resistant Gram-negative bacteria. Horizontal plasmid transfer spreads the resistance mechanism to new bacteria, and understanding the plasmid ecology of the hospital environment can assist in the design of control strategies to prevent nosocomial infections. A 5-year genomic and epidemiological survey was undertaken to study the CPOs in the patient-accessible environment, as well as in the plumbing system removed from the patient. This comprehensive survey revealed a vast, unappreciated reservoir of CPOs in wastewater, which was in contrast to the low positivity rate in both the patient population and the patient-accessible environment. While there were few patient-environmental isolate associations, there were plasmid backbones common to both populations. These results are relevant to all hospitals for which CPO colonization may not yet be defined through extensive surveillance.


Assuntos
Proteínas de Bactérias/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/isolamento & purificação , Plasmídeos/análise , Engenharia Sanitária , Microbiologia da Água , beta-Lactamases/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Hospitais , Humanos , Metagenômica , Prevalência , Sequenciamento Completo do Genoma
16.
J Clin Microbiol ; 55(12): 3530-3543, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29021151

RESUMO

Recent advances in nanopore sequencing technology have led to a substantial increase in throughput and sequence quality. Together, these improvements may permit real-time benchtop genomic sequencing and antimicrobial resistance gene detection in clinical isolates. In this study, we evaluated workflows and turnaround times for a benchtop long-read sequencing approach in the clinical microbiology laboratory using the Oxford Nanopore Technologies MinION sequencer. We performed genomic and plasmid sequencing of three clinical isolates with both MinION and Illumina MiSeq, using different library preparation methods (2D and rapid 1D) with the goal of antimicrobial resistance gene detection. We specifically evaluated the advantages of using plasmid DNA for sequencing and the value of supplementing MinION sequences with MiSeq reads for increasing assembly accuracy. Resequencing of three plasmids in a reference Klebsiella pneumoniae isolate demonstrated ∼99% accuracy of draft MinION-only assembly and >99.9% accuracy of assembly polished with MiSeq reads. Plasmid DNA sequencing of previously uncharacterized clinical extended-spectrum ß-lactamase (ESBL)-producing Escherichia coli and K. pneumoniae isolates using MinION allowed successful identification of antimicrobial resistance genes in the draft assembly corresponding to all classes of observed plasmid-based phenotypic resistance. Importantly, use of plasmid DNA enabled lower depth sequencing, and assemblies sufficient for full antimicrobial resistance gene annotation were obtained with as few as 2,000 to 5,000 reads, which could be acquired in 20 min of sequencing. With a MinION-only workflow that balances accuracy against turnaround time, full annotation of plasmid resistance gene content could be obtained in under 6 h from a subcultured isolate, less time than traditional phenotypic susceptibility testing.


Assuntos
Farmacorresistência Bacteriana , Escherichia coli/genética , Genes Bacterianos , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana/métodos , Plasmídeos , Análise de Sequência de DNA/métodos , Infecções Bacterianas/diagnóstico , Infecções Bacterianas/microbiologia , Escherichia coli/isolamento & purificação , Klebsiella pneumoniae/isolamento & purificação , Nanoporos , Fatores de Tempo , Fluxo de Trabalho
17.
Nucleic Acids Res ; 44(20): 9784-9802, 2016 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-27655631

RESUMO

The epigenetic events imposed during germline reprogramming and affected by harmful exposure can be inherited and transferred to subsequent generations via gametes inheritance. In this study, we examine the transgenerational effects promoted by widely used herbicide atrazine (ATZ). We exposed pregnant outbred CD1 female mice and the male progeny was crossed for three generations with untreated females. We demonstrate here that exposure to ATZ affects meiosis, spermiogenesis and reduces the spermatozoa number in the third generation (F3) male mice. We suggest that changes in testis cell types originate from modified transcriptional network in undifferentiated spermatogonia. Importantly, exposure to ATZ dramatically increases the number of transcripts with novel transcription initiation sites, spliced variants and alternative polyadenylation sites. We found the global decrease in H3K4me3 occupancy in the third generation males. The regions with altered H3K4me3 occupancy in F3 ATZ-derived males correspond to altered H3K4me3 occupancy of F1 generation and 74% of changed peaks in F3 generation are associated with enhancers. The regions with altered H3K4me3 occupancy are enriched in SP family and WT1 transcription factor binding sites. Our data suggest that the embryonic exposure to ATZ affects the development and the changes induced by ATZ are transferred up to three generations.


Assuntos
Atrazina/efeitos adversos , Exposição Ambiental/efeitos adversos , Epigênese Genética/efeitos dos fármacos , Herbicidas/efeitos adversos , Histonas/metabolismo , Efeitos Tardios da Exposição Pré-Natal , Transcrição Gênica/efeitos dos fármacos , Animais , Sítios de Ligação , Imunoprecipitação da Cromatina , Análise por Conglomerados , Feminino , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Exposição Materna , Meiose/efeitos dos fármacos , Metilação/efeitos dos fármacos , Camundongos , Motivos de Nucleotídeos , Especificidade de Órgãos/genética , Matrizes de Pontuação de Posição Específica , Gravidez , Ligação Proteica , RNA Longo não Codificante/genética , Espermatogênese/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo , Testículo/efeitos dos fármacos , Testículo/metabolismo , Testículo/patologia
18.
Science ; 346(6211): 1256442, 2014 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25395542

RESUMO

DNA double-strand breaks (DSBs) are introduced in meiosis to initiate recombination and generate crossovers, the reciprocal exchanges of genetic material between parental chromosomes. Here, we present high-resolution maps of meiotic DSBs in individual human genomes. Comparing DSB maps between individuals shows that along with DNA binding by PRDM9, additional factors may dictate the efficiency of DSB formation. We find evidence for both GC-biased gene conversion and mutagenesis around meiotic DSB hotspots, while frequent colocalization of DSB hotspots with chromosome rearrangement breakpoints implicates the aberrant repair of meiotic DSBs in genomic disorders. Furthermore, our data indicate that DSB frequency is a major determinant of crossover rate. These maps provide new insights into the regulation of meiotic recombination and the impact of meiotic recombination on genome function.


Assuntos
Mapeamento Cromossômico , Quebras de DNA de Cadeia Dupla , Genoma Humano/genética , Instabilidade Genômica , Recombinação Homóloga , Meiose/genética , Alelos , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Masculino , Ligação Proteica , Espermatócitos , Telômero/genética
19.
BMC Genomics ; 15: 39, 2014 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-24438502

RESUMO

BACKGROUND: Differentiation of primordial germ cells into mature spermatozoa proceeds through multiple stages, one of the most important of which is meiosis. Meiotic recombination is in turn a key part of meiosis. To achieve the highly specialized and diverse functions necessary for the successful completion of meiosis and the generation of spermatozoa thousands of genes are coordinately regulated through spermatogenesis. A complete and unbiased characterization of the transcriptome dynamics of spermatogenesis is, however, still lacking. RESULTS: In order to characterize gene expression during spermatogenesis we sequenced eight mRNA samples from testes of juvenile mice from 6 to 38 days post partum. Using gene expression clustering we defined over 1,000 novel meiotically-expressed genes. We also developed a computational de-convolution approach and used it to estimate cell type-specific gene expression in pre-meiotic, meiotic and post-meiotic cells. In addition, we detected 13,000 novel alternative splicing events around 40% of which preserve an open reading frame, and found experimental support for 159 computational gene predictions. A comparison of RNA polymerase II (Pol II) ChIP-Seq signals with RNA-Seq coverage shows that gene expression correlates well with Pol II signals, both at promoters and along the gene body. However, we observe numerous instances of non-canonical promoter usage, as well as intergenic Pol II peaks that potentially delineate unannotated promoters, enhancers or small RNA clusters. CONCLUSIONS: Here we provide a comprehensive analysis of gene expression throughout mouse meiosis and spermatogenesis. Importantly, we find over a thousand of novel meiotic genes and over 5,000 novel potentially coding isoforms. These data should be a valuable resource for future studies of meiosis and spermatogenesis in mammals.


Assuntos
Perfilação da Expressão Gênica , Espermatogênese/genética , Espermatozoides/metabolismo , Algoritmos , Processamento Alternativo , Animais , Análise por Conglomerados , Masculino , Meiose , Camundongos , Fases de Leitura Aberta , RNA Polimerase II/metabolismo , Análise de Sequência de RNA , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo
20.
Nature ; 485(7400): 642-5, 2012 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-22660327

RESUMO

Genetic recombination occurs during meiosis, the key developmental programme of gametogenesis. Recombination in mammals has been recently linked to the activity of a histone H3 methyltransferase, PR domain containing 9 (PRDM9), the product of the only known speciation-associated gene in mammals. PRDM9 is thought to determine the preferred recombination sites--recombination hotspots--through sequence-specific binding of its highly polymorphic multi-Zn-finger domain. Nevertheless, Prdm9 knockout mice are proficient at initiating recombination. Here we map and analyse the genome-wide distribution of recombination initiation sites in Prdm9 knockout mice and in two mouse strains with different Prdm9 alleles and their F(1) hybrid. We show that PRDM9 determines the positions of practically all hotspots in the mouse genome, with the exception of the pseudo-autosomal region (PAR)--the only area of the genome that undergoes recombination in 100% of cells. Surprisingly, hotspots are still observed in Prdm9 knockout mice, and as in wild type, these hotspots are found at H3 lysine 4 (H3K4) trimethylation marks. However, in the absence of PRDM9, most recombination is initiated at promoters and at other sites of PRDM9-independent H3K4 trimethylation. Such sites are rarely targeted in wild-type mice, indicating an unexpected role of the PRDM9 protein in sequestering the recombination machinery away from gene-promoter regions and other functional genomic elements.


Assuntos
Quebras de DNA de Cadeia Dupla , Genoma/genética , Histona-Lisina N-Metiltransferase/metabolismo , Regiões Promotoras Genéticas/genética , Recombinação Genética/genética , Alelos , Sequência de Aminoácidos , Animais , Sequência de Bases , Histona-Lisina N-Metiltransferase/deficiência , Histona-Lisina N-Metiltransferase/genética , Histonas/química , Histonas/metabolismo , Meiose/genética , Metilação , Camundongos , Camundongos Knockout , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...