Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 11: e15961, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37663282

RESUMO

Histone acetylation and deacetylation affect the patterns of gene expression in cellular differentiation, playing pivotal roles in tissue development and maintenance. For example, the intrinsic histone acetyltransferase activity of transcriptional coactivator p300 is especially required for the expression of myogenic regulatory factors including Myf5 and MyoD, and consequently for skeletal myogenesis. On the other hand, histone deacetylases (HDACs) remove the acetyl group from histones, which is critical for gene repression in stem cell fate transition. Through integrative omic analyses, we found that while some HDACs were differentially expressed at the early stage of skeletal myoblast differentiation, Hdac11 gene expression was significantly enhanced by nuclear receptor signaling. In addition, p300 and MyoD control Hdac11 expression in milieu of normal and signal-enhanced myoblast differentiation. Thus, HDAC11 may be essential to differential gene expression at the onset of myoblast differentiation.


Assuntos
Histona Desacetilases , Histonas , Acetilação , Diferenciação Celular/genética , Expressão Gênica , Histona Desacetilases/genética
3.
J Big Data ; 9(1): 116, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36514349

RESUMO

Dynamic changes in epigenetic landscape reflect a critical command of lineage-specific gene expression. In an effort to discern the epigenetic regulatory networks of myogenic differentiation, we have used systematic and integrative approaches to explore multi-omics datasets on global myogenic gene expression, histone acetylation and acetyltransferase occupancy in view of distinct chromatin states. In this brief report, we discuss experimental design and provide a comprehensive assessment regarding data quality control, filtering and processing. We also define a gene-level overlap between RNA-seq and ChIP-seq datasets through integrative analyses to offer strategies for future use of the data. Furthermore, our analyses generate a blueprint on chromatin state distribution of residue-specific histone acetylation and concomitant association with histone acetyltransferase p300 in committed skeletal myoblasts and differential histone acetylation signatures at the onset of myoblast differentiation. These datasets can be further utilized to delineate the function of muscle-specific regulatory elements governed by other muscle myogenic regulators or signaling molecules.

4.
Int J Radiat Biol ; 98(12): 1789-1801, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35939063

RESUMO

BACKGROUND: In the past three decades, a large body of data on the effects of exposure to ionizing radiation and the ensuing changes in gene expression has been generated. These data have allowed for an understanding of molecular-level events and shown a level of consistency in response despite the vast formats and experimental procedures being used across institutions. However, clarity on how this information may inform strategies for health risk assessment needs to be explored. An approach to bridge this gap is the adverse outcome pathway (AOP) framework. AOPs represent an illustrative framework characterizing a stressor associated with a sequential set of causally linked key events (KEs) at different levels of biological organization, beginning with a molecular initiating event (MIE) and culminating in an adverse outcome (AO). Here, we demonstrate the interpretation of transcriptomic datasets in the context of the AOP framework within the field of ionizing radiation by using a lung cancer AOP (AOP 272: https://www.aopwiki.org/aops/272) as a case example. METHODS: Through the mining of the literature, radiation exposure-related transcriptomic studies in line with AOP 272 related to lung cancer, DNA damage response, and repair were identified. The differentially expressed genes within relevant studies were collated and subjected to the pathway and network analysis using Reactome and GeneMANIA platforms. Identified pathways were filtered (p < .001, ≥3 genes) and categorized based on relevance to KEs in the AOP. Gene connectivities were identified and further grouped by gene expression-informed associated events (AEs). Relevant quantitative dose-response data were used to inform the directionality in the expression of the genes in the network across AEs. RESULTS: Reactome analyses identified 7 high-level biological processes with multiple pathways and associated genes that mapped to potential KEs in AOP 272. The gene connectivities were further represented as a network of AEs with associated expression profiles that highlighted patterns of gene expression levels. CONCLUSIONS: This study demonstrates the application of transcriptomics data in AOP development and provides information on potential data gaps. Although the approach is new and anticipated to evolve, it shows promise for improving the understanding of underlying mechanisms of disease progression with a long-term vision to be predictive of adverse outcomes.


Assuntos
Rotas de Resultados Adversos , Neoplasias Pulmonares , Lesões por Radiação , Humanos , Transcriptoma , Medição de Risco/métodos , Radiação Ionizante , Neoplasias Pulmonares/genética
5.
Front Pharmacol ; 12: 746513, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603059

RESUMO

Stem cells represent a key resource in regenerative medicine, however, there is a critical need for pharmacological modulators to promote efficient conversion of stem cells into a myogenic lineage. We have previously shown that bexarotene, an agonist of retinoid X receptor (RXR) approved for cancer therapy, promotes the specification and differentiation of skeletal muscle progenitors. To decipher the molecular regulation of rexinoid signaling in myogenic differentiation, we have integrated RNA-seq transcription profiles with ChIP-seq of H4K8, H3K9, H3K18, H3K27 acetylation, and H3K27 methylation in addition to that of histone acetyl-transferase p300 in rexinoid-promoted myoblast differentiation. Here, we provide details regarding data collection, validation and omics integration analyses to offer strategies for future data application and replication. Our analyses also reveal molecular pathways underlying different patterns of gene expression and p300-associated histone acetylation at distinct chromatin states in rexinoid-enhanced myoblast differentiation. These datasets can be repurposed for future studies to examine the relationship between signaling molecules, chromatin modifiers and histone acetylation in myogenic regulation, providing a framework for discovery and functional characterization of muscle-specific loci.

6.
J Cancer ; 11(19): 5802-5811, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32913473

RESUMO

Moxidectin (MOX), a broad-spectrum antiparasitic drug, has been characterized as a potential anti-glioma agent. The main objective of this study was to explore autophagy induced by MOX in glioma U251 and C6 cells, and the deep underlying molecular mechanisms. In addition, the effects of autophagy on apoptosis in glioma cells were tested. Autophagy was measured by transmission electron microscopy (TEM), immunofluorescence, western blot and immunohistochemistry. Cell viability was detected with MTT and colony formation assay. The apoptosis rate was measured by flow cytometry and terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL). Additonally, autophagy inhibition was achieved by using 3-Methyladenine (3-MA) and chloroquine (CQ). U251-derived xenografts were established for examination of MOX-induced autophagy on glioma in vivo. Firstly, our research found that MOX stimulated autophagy of glioma cells in a dose-dependent manner. Secondly, we found that MOX induced autophagy by inhibiting the AKT/mTOR signalling pathway. Thirdly, inhibition of autophagy could reduce apoptosis in MOX-treated glioma cells. Finally, MOX induced autophagy, and autophagy increased the apoptosis effect of MOX on U251 in vivo. In conclusion, our data provide evidence that MOX can induce autophagy in glioma cells, and autophagy could increase MOX-induced apoptosis through inhibiting the AKT/mTOR signalling pathway. These findings provided a new prospect for the application of MOX and a novel targeted therapy for the treatment of gliomas.

7.
Commun Biol ; 3(1): 315, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32555436

RESUMO

Deciphering the molecular mechanisms underpinning myoblast differentiation is a critical step in developing the best strategy to promote muscle regeneration in patients suffering from muscle-related diseases. We have previously established that a rexinoid x receptor (RXR)-selective agonist, bexarotene, enhances the differentiation and fusion of myoblasts through a direct regulation of MyoD expression, coupled with an augmentation of myogenin protein. Here, we found that RXR signaling associates with the distribution of myogenin at poised enhancers and a distinct E-box motif. We also found an association of myogenin with rexinoid-responsive gene expression and identified an epigenetic signature related to histone acetyltransferase p300. Moreover, RXR signaling augments residue-specific histone acetylation at enhancers co-occupied by p300 and myogenin. Thus, genomic distribution of transcriptional regulators is an important designate for identifying novel targets as well as developing therapeutics that modulate epigenetic landscape in a selective manner to promote muscle regeneration.


Assuntos
Mioblastos/citologia , Miogenina/metabolismo , Receptores X de Retinoides/metabolismo , Acetilação , Animais , Bexaroteno/farmacologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Linhagem Celular , Imunoprecipitação da Cromatina , Proteína p300 Associada a E1A/metabolismo , Elementos Facilitadores Genéticos , Epigênese Genética , Histonas/metabolismo , Camundongos , Miogenina/genética , Receptores X de Retinoides/genética , Transdução de Sinais
8.
Epigenetics ; 13(6): 642-654, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29927685

RESUMO

Molecular regulation of stem cell differentiation is exerted through both genetic and epigenetic determinants over distal regulatory or enhancer regions. Understanding the mechanistic action of active or poised enhancers is therefore imperative for control of stem cell differentiation. Based on the genome-wide co-occurrence of different epigenetic marks in committed proliferating myoblasts, we have previously generated a 14-state chromatin state model to profile rexinoid-responsive histone acetylation in early myoblast differentiation. Here, we delineate the functional mode of transcription regulators during early myogenic differentiation using genome-wide chromatin state association. We define a role of transcriptional coactivator p300, when recruited by muscle master regulator MyoD, in the establishment and regulation of myogenic loci at the onset of myoblast differentiation. In addition, we reveal an enrichment of loci-specific histone acetylation at p300 associated active or poised enhancers, particularly when enlisted by MyoD. We provide novel molecular insights into the regulation of myogenic enhancers by p300 in concert with MyoD. Our studies present a valuable aptitude for driving condition-specific chromatin state or enhancers pharmacologically to treat muscle-related diseases and for the identification of additional myogenic targets and molecular interactions for therapeutic development. ABBREVIATIONS: MRF: Muscle regulatory factor; HAT: Histone acetyltransferase; CBP: CREB-binding protein; ES: Embryonic stem; ATCC: American type culture collection; DM: Differentiation medium; DMEM: Dulbecco's Modified Eagle Medium; GM: Growth medium; GO: Gene ontology; GREAT: Genomic regions enrichment of annotations tool; FPKM: Fragments per kilobase of transcript per million; GEO: Gene expression omnibus; MACS: Model-based analysis for ChIP-seq.


Assuntos
Diferenciação Celular , Código das Histonas , Histonas/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Processamento de Proteína Pós-Traducional , Fatores de Transcrição de p300-CBP/metabolismo , Acetilação , Animais , Linhagem Celular , Elementos Facilitadores Genéticos , Histonas/química , Camundongos , Fibras Musculares Esqueléticas/citologia
9.
Nucleic Acids Res ; 45(19): 11236-11248, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-28981706

RESUMO

While skeletal myogenesis is tightly coordinated by myogenic regulatory factors including MyoD and myogenin, chromatin modifications have emerged as vital mechanisms of myogenic regulation. We have previously established that bexarotene, a clinically approved agonist of retinoid X receptor (RXR), promotes the specification and differentiation of skeletal muscle lineage. Here, we examine the genome-wide impact of rexinoids on myogenic differentiation through integral RNA-seq and ChIP-seq analyses. We found that bexarotene promotes myoblast differentiation through the coordination of exit from the cell cycle and the activation of muscle-related genes. We uncovered a new mechanism of rexinoid action which is mediated by the nuclear receptor and largely reconciled through a direct regulation of MyoD gene expression. In addition, we determined a rexinoid-responsive residue-specific histone acetylation at a distinct chromatin state associated to MyoD and myogenin. Thus, we provide novel molecular insights into the interplay between RXR signaling and chromatin states pertinent to myogenic programs in early myoblast differentiation.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Cromatina/metabolismo , Proteína MyoD/metabolismo , Mioblastos/efeitos dos fármacos , Miogenina/metabolismo , Tetra-Hidronaftalenos/farmacologia , Animais , Anticarcinógenos/farmacologia , Bexaroteno , Western Blotting , Diferenciação Celular/genética , Linhagem Celular , Cromatina/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Camundongos , Desenvolvimento Muscular/efeitos dos fármacos , Desenvolvimento Muscular/genética , Proteína MyoD/genética , Mioblastos/metabolismo , Miogenina/genética , Receptores X de Retinoides/agonistas , Receptores X de Retinoides/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos
10.
Sci Rep ; 3: 2390, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23928680

RESUMO

While chromatin modifications can offer a useful readout for enhancer activities, it is less clear whether these modification marks are a cause or consequence of transcription factor occupancy and enhancer activation. We have examined in details the temporal events of acetyltransferase associations and histone acetylations at different regulatory regions of the Myod1 locus. Our studies demonstrate that the histone acetyltransferase (HAT) p300 is stepwise enriched at distinct Myod1 regulatory regions during myogenic differentiation. This enrichment of p300 is associated with increased histone acetylation in a discrete pattern. Inhibition of p300 HAT activity impedes myogenic differentiation, which is coupled with decreased histone acetylation at specific Myod1 regulatory regions. We show for the first time that p300 is directly involved in the early regulation of Myod1 enhancer, and provide molecular insights into how p300 HAT activity and histone acetylation are related to enhancer activation and, consequently, gene transcription.


Assuntos
Fibroblastos/citologia , Fibroblastos/fisiologia , Histona Acetiltransferases/genética , Histonas/fisiologia , Proteína MyoD/genética , Mioblastos/citologia , Mioblastos/fisiologia , Acetilação , Animais , Diferenciação Celular/genética , Linhagem Celular , Camundongos , Sequências Reguladoras de Ácido Nucleico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...