Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 594: 362-371, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33774393

RESUMO

Microencapsulation helps to improve bioavailability of a functional whey protein, lactoferrin (Lf), in adults. Herein, we report the Lf loading capacity (LC) and retention efficiency (RE) in the microparticles of surface-reacted calcium carbonate (SRCC) of different types and compare them to those of widely used vaterite microparticles. The LCs and REs are analyzed in connection to the total surface area and the volume of intraparticle pores. The best performing SRCC3 demonstrates Lf LC of 11.00 wt% achieved in a single absorption step and 74% RE after two cycles of washing with deionized water. A much larger surface area of SRCC templates and a lower pH required to release Lf do not affect its antitumor activity in MCF-7 assay. Layer-by-Layer assembly of pepsin-tannic acid multilayer shell around Lf-loaded microparticles followed by acidic decomposition of the inorganic core produces microencapsulated Lf with a yield ~36 times higher than from vaterite templates reported earlier, while the scale of encapsulated Lf production is ~12,000 times larger. In vitro digestion tests demonstrate the protection of ~65% of encapsulated Lf from gastric digestion. The developed capsules are prospective candidates for functional foods fortified with Lf.


Assuntos
Carbonato de Cálcio , Lactoferrina , Cápsulas , Lactoferrina/metabolismo , Estudos Prospectivos , Taninos
2.
Chem Rec ; 16(4): 1965-90, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27291595

RESUMO

With their remarkable properties and wide-ranging applications, nanostructures of noble metals and metal oxides have been receiving significantly increased attention in recent years. The desire to combine the properties of these two functional materials for specific applications has naturally prompted research in the design and synthesis of novel nanocomposites, consisting of both noble metal and metal-oxide components. In this review, particular attention is given to core-shell type metal oxide-coated noble metal nanostructures (i.e., metal@oxide), which display potential utility in applications, including photothermal therapy, catalytic conversions, photocatalysis, molecular sensing, and photovoltaics. Emerging research directions and areas are envisioned at the end to solicit more attention and work in this regard.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...