Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 10(55): 33010-33017, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-35515072

RESUMO

The development of novel materials with improved functional characteristics for supercapacitor electrodes is of current concern and calls for elaboration of innovative approaches. We report on an eco-friendly enzymatic synthesis of a composite based on poly(3,4-ethylenedioxythiophene) (PEDOT) and multi-walled carbon nanotubes (MWCNTs). The redox active compound, sodium 1,2-naphthoquinone-4-sulfonate (NQS), was used as a dopant for the backbone of the polymer. Oxidative polymerization of 3,4-ethylenedioxythiophene (EDOT) was catalyzed by a high redox potential laccase from the fungus Trametes hirsuta. Atmospheric oxygen served as an oxidant. A uniform thin layer of NQS-doped PEDOT formed on the surface of MWCNTs as a result of the enzymatic polymerization. The PEDOT-NQS/MWCNT composite showed a high specific capacitance of ca. 575 F g-1 at a potential scan rate of 5 mV s-1 and an excellent cycling stability within a potential window between -0.5 and 1.0 V, which makes it a promising electrode material for high-performance supercapacitors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...