Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(1)2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36613737

RESUMO

The development of "biohybrid" drug delivery systems (DDS) based on mesenchymal stem/stromal cells (MSCs) is an important focus of current biotechnology research, particularly in the areas of oncotheranostics, regenerative medicine, and tissue bioengineering. However, the behavior of MSCs at sites of inflammation and tumor growth is relevant to potential tumor transformation, immunosuppression, the inhibition or stimulation of tumor growth, metastasis, and angiogenesis. Therefore, the concept was formulated to control the lifespan of MSCs for a specific time sufficient for drug delivery to the target tissue by varying the number of internalized microcontainers. The current study addressed the time-dependent in vitro assessment of the viability, migration, and division of human adipose-derived MSCs (hAMSCs) as a function of the dose of internalized polyelectrolyte microcapsules prepared using a layer-by-layer technique. Polystyrene sulfonate (PSS)­poly(allylamine hydrochloride) (PAH)-coated spherical micrometer-sized (diameter ~2−3 µm) vaterite (CaCO3) microcapsules (PAH-PSS)6 with the capping PSS layer were prepared after dissolution of the CaCO3 core template. The Cell-IQ phase contrast imaging results showed that hAMSCs internalized all (PAH-PSS)6 microcapsules saturating the intercellular medium (5−90 particles per cell). A strong (r > 0.7) linear dose-dependent and time-dependent (up to 8 days) regression was observed between the in vitro decrease in cell viability and the number of internalized microvesicles. The approximate time-to-complete-death of hAMSCs at different concentrations of microcapsules in culture was 428 h (1:5 ratio), 339 h (1:10), 252 h (1:20), 247 h (1:45), and 170 h (1:90 ratio). By varying the number of microcontainers loaded into the cells (from 1:10 to 1:90), a dose-dependent exponential decrease in both the movement rate and division rate of hAMSCs was observed. A real-time cell analysis (RTCA) of the effect of (PAH-PSS)6 microcapsules (from 1:5 to 1:20) on hAMSCs also showed a dose- and time-dependent decrease in cell longevity after a 50h study at ratios of 1:10 and 1:20. The incorporation of microcapsules (1:5, 1:20, and 1:45) resulted in a dose-dependent increase in 24−48 h secretion of GRO-α (CXCL1), MIF, and SDF-1α (CXCL12) chemokines in hAMSC culture. In turn, the normalization or inhibition of chemokine secretion occurred after 72 h, except for MIF levels below 5−20 microcapsules, which were internalized by MSCs. Thus, the proposed concept of controlling the lifespan of MSC-based DDS using a dose of internalized PAH-PSS microcapsules could be useful for biomedical applications. (PAH-PSS)6 microcapsule ratios of 1:5 and 1:10 have little effect on the lifespan of hAMSCs for a long time (up to 14−18 days), which can be recommended for regenerative therapy and tissue bioengineering associated with low oncological risk. The microcapsule ratios of 1:20 and 1:45 did not significantly restrict the migratory activity of hAMSCs-based DDS during the time interval required for tissue delivery (up to 4−5 days), followed by cell death after 10 days. Therefore, such doses of microcapsules can be used for hAMSC-based DDS in oncotheranostics.


Assuntos
Sistemas de Liberação de Medicamentos , Longevidade , Humanos , Cápsulas , Polieletrólitos , Carbonato de Cálcio
2.
Materials (Basel) ; 14(13)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34279263

RESUMO

A modern trend in traumatology, orthopedics, and implantology is the development of materials and coatings with an amorphous-crystalline structure that exhibits excellent biocopatibility. The structure and physico-chemical and biological properties of calcium phosphate (CaP) coatings deposited on Ti plates using the micro-arc oxidation (MAO) method under different voltages (200, 250, and 300 V) were studied. Amorphous, nanocrystalline, and microcrystalline statesof CaHPO4 and ß-Ca2P2O7 were observed in the coatings using TEM and XRD. The increase in MAO voltage resulted in augmentation of the surface roughness Ra from 2.5 to 6.5 µm, mass from 10 to 25 mg, thickness from 50 to 105 µm, and Ca/P ratio from 0.3 to 0.6. The electrical potential (EP) of the CaP coatings changed from -456 to -535 mV, while the zeta potential (ZP) decreased from -53 to -40 mV following an increase in the values of the MAO voltage. Numerous correlations of physical and chemical indices of CaP coatings were estimated. A decrease in the ZP magnitudes of CaP coatings deposited at 200-250 V was strongly associated with elevated hTERT expression in tumor-derived Jurkat T cells preliminarily activated with anti-CD2/CD3/CD28 antibodies and then contacted in vitro with CaP-coated samples for 14 days. In turn, in vitro survival of CD4+ subsets was enhanced, with proinflammatory cytokine secretion of activated Jurkat T cells. Thus, the applied MAO voltage allowed the regulation of the physicochemical properties of amorphous-crystalline CaP-coatings on Ti substrates to a certain extent. This method may be used as a technological mechanism to trigger the behavior of cells through contact with micro-arc CaP coatings. The possible role of negative ZP and Ca2+ as effectors of the biological effects of amorphous-crystalline CaP coatings is discussed. Micro-arc CaP coatings should be carefully tested to determine their suitability for use in patients with chronic lymphoid malignancies.

3.
Int J Mol Sci ; 21(20)2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33081386

RESUMO

The manufacture of biomaterial surfaces with desired physical and chemical properties that can directly induce osteogenic differentiation without the need for biochemical additives is an excellent strategy for controlling the behavior of mesenchymal stem cells (MSCs) in vivo. We studied the cellular and molecular reactions of MSCs to samples with a double-sided calcium phosphate (CaP) coating and an average roughness index (Ra) of 2.4-4.6 µm. The study aimed to evaluate the effect of a three-dimensional matrix on the relative mRNA expression levels of genes associated with the differentiation and maturation of MSCs toward osteogenesis (RUNX2, BMP2, BMP6, BGLAP, and ALPL) under conditions of distant interaction in vitro. Correlations were revealed between the mRNA expression of some osteogenic and cytokine/chemokine genes and the secretion of cytokines and chemokines that may potentiate the differentiation of cells into osteoblasts, which indicates the formation of humoral components of the extracellular matrix and the creation of conditions supporting the establishment of hematopoietic niches.


Assuntos
Materiais Revestidos Biocompatíveis/farmacologia , Células-Tronco Mesenquimais/metabolismo , Tecido Adiposo/citologia , Adulto , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Fosfatos de Cálcio/química , Diferenciação Celular , Células Cultivadas , Materiais Revestidos Biocompatíveis/química , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteocalcina/genética , Osteocalcina/metabolismo
4.
Curr Pharm Des ; 24(26): 3034-3054, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30160210

RESUMO

BACKGROUND: R. Schofield (1978) proposed a hypothesis of hematopoietic stem cells (HSCs) niche (specialized cell microenvironment). An existence of osteoblastic and vascular niches for HSCs has been postulated since 2003. At the same time, the discussion about the existence and functioning of niche for multipotent mesenchymal stromal cells (MMSCs) is just beginning to develop. The design of artificial materials capable of biomimetical reproductionof the cellular and tissue microenvironment based on ideas and main elements borrowed from wildlife is an experimental approach in search of the stem cell niches. RESULTS: Recent attempts to model the microterritories (niches) for HSCs have been undertaken and the behavior of cells in such structures has been investigated. However, the main quantitative factors involved in the original design of stem cell microterritories remain unknown. At the modern stage, the topography, hierarchy, and the size of the niches have to be determined, because the definition of the niches as morphological (structural and functional) units (microterritories), which provides the conditions for vital activity of stem cells, implies finite values of its parameters. The aim of this review was the critical review of key milestones of the niche concept for HSCs and MMSCs as we understood it. CONCLUSION: We speculated our definition of the stem cell niche, proposed and described certain stages (postulation; morphofunctional; topographical; quantitative; bioengineering) of the niche theory development. Prospective directions of the niche designing for cell-based diagnostics and regenerative medicine were noted.


Assuntos
Células-Tronco Hematopoéticas , Medicina Regenerativa , Nicho de Células-Tronco , Células Estromais , Animais , Humanos
5.
Materials (Basel) ; 11(6)2018 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-29890754

RESUMO

Mesenchymal stem cells (MSCs) and osteoblasts respond to the surface electrical charge and topography of biomaterials. This work focuses on the connection between the roughness of calcium phosphate (CP) surfaces and their electrical potential (EP) at the micro- and nanoscales and the possible role of these parameters in jointly affecting human MSC osteogenic differentiation and maturation in vitro. A microarc CP coating was deposited on titanium substrates and characterized at the micro- and nanoscale. Human adult adipose-derived MSCs (hAMSCs) or prenatal stromal cells from the human lung (HLPSCs) were cultured on the CP surface to estimate MSC behavior. The roughness, nonuniform charge polarity, and EP of CP microarc coatings on a titanium substrate were shown to affect the osteogenic differentiation and maturation of hAMSCs and HLPSCs in vitro. The surface EP induced by the negative charge increased with increasing surface roughness at the microscale. The surface relief at the nanoscale had an impact on the sign of the EP. Negative electrical charges were mainly located within the micro- and nanosockets of the coating surface, whereas positive charges were detected predominantly at the nanorelief peaks. HLPSCs located in the sockets of the CP surface expressed the osteoblastic markers osteocalcin and alkaline phosphatase. The CP multilevel topography induced charge polarity and an EP and overall promoted the osteoblast phenotype of HLPSCs. The negative sign of the EP and its magnitude at the micro- and nanosockets might be sensitive factors that can trigger osteoblastic differentiation and maturation of human stromal cells.

6.
Materials (Basel) ; 11(3)2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29495627

RESUMO

The response of the human Jurkat T cell leukemia-derived cell line (Jurkat T cells) after 24 h of in vitro exposure to a titanium substrate (12 × 12 × 1 mm³) with a bilateral rough (Ra = 2.2-3.7 µm) titanium oxide coating (rTOC) applied using the micro-arc method in a 20% orthophosphoric acid solution was studied. A 1.5-fold down-regulation of hTERT mRNA expression and decreases in CD3, CD4, CD8, and CD95 presentation and IL-4 and TNFα secretion were observed. Jurkat T cell inactivation was not correlated with the generation of intracellular reactive oxygen species (ROS) and was not mediated by TiO2 nanoparticles with a diameter of 14 ± 8 nm at doses of 1 mg/L or 10 mg/L. The inhibitory effect of the rTOC (Ra = 2.2-3.7 µm) on the survival of Jurkat T cells (Spearman's coefficient rs = -0.95; n = 9; p < 0.0001) was demonstrated by an increase in the necrotic cell count among the cell population. In turn, an elevation of the Ra index of the rTOC was accompanied by a linear increase (r = 0.6; p < 0.000001, n = 60) in the magnitude of the negative electrostatic potential of the titanium oxide surface. Thus, the roughness of the rTOC induces an electrostatic potential and decreases the viability of the immortalized Jurkat T cells through mechanisms unrelated to ROS generation. This may be useful for replacement surgery applications of rough TiO2 implants in cancer patients.

7.
Methods Mol Biol ; 1035: 103-19, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23959985

RESUMO

Extracellular matrix can regulate multipotent mesenchymal stromal cells (MMSC) differentiation, with potential applications for tissue engineering. A relief of mineralized bone takes essential effect on MMSC fate. Nevertheless, delicate structure and a hierarchy of niches for stromal stem cells and its quantitative parameters are not practically known. Here, we describe the protocol to define the basic approach providing a guiding for in vitro identification of quantitative features of artificial calcium phosphate niches which promotes osteogenic differentiation and maturation of stromal stem cell.


Assuntos
Diferenciação Celular , Células-Tronco Mesenquimais/fisiologia , Fosfatase Alcalina/metabolismo , Fosfatos de Cálcio/química , Técnicas de Cultura de Células , Células Cultivadas , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Pulmão/citologia , Microscopia Eletrônica de Varredura , Osteocalcina/metabolismo , Osteogênese , Nicho de Células-Tronco , Propriedades de Superfície , Fixação de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...