Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 147: 106090, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37717289

RESUMO

Understanding of the mechanical properties of skin is crucial in evaluating the performance of skin-interfacing medical devices. Artificial skin models (ASMs) have rapidly gained attention as they are able to overcome the challenges in ethically sourcing consistent and representative ex vivo animal or human tissue models. Although some ASMs have become commercialised, a thorough understanding of the mechanical properties of the skin models is crucial to ensure that they are suitable for the purpose of the study. In the present study, skin and fat layers of ASMs (Simulab®, LifeLike®, SynDaver® and Parafilm®) were mechanically characterised through hardness, needle insertion, tensile and compression testing. Different boundary constraint conditions (minimally and highly constrained) were investigated for needle insertion testing, while anisotropic properties of the skin models were investigated through different specimen orientations during tensile testing. Analysis of variance (ANOVA) tests were performed to compare the mechanical properties between the skin models. Properties of the skin models were compared against literature to determine the suitability of the skin models based on the material property of interest. All skin models offer relatively consistent mechanical performance, providing a solid basis for benchtop evaluation of skin-interfacing medical device performance. Through prioritising models with mechanical properties that are consistent with human skin data, and with limited variance, researchers can use the data presented here as a toolbox to select the most appropriate ASM for their particular application.

2.
Med Eng Phys ; 112: 103950, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36842773

RESUMO

No-touch bipolar radiofrequency ablation (bRFA) is known to produce incomplete tumour ablation with a 'butterfly-shaped' coagulation zone when the interelectrode distance exceeds a certain threshold. Although non-confluent coagulation zone can be avoided by not implementing the no-touch mode, doing so exposes the patient to the risk of tumour track seeding. The present study investigates if prior infusion of saline into the tissue can overcome the issues of non-confluent or butterfly-shaped coagulation. A computational modelling approach based on the finite element method was carried out. A two-compartment model comprising the tumour that is surrounded by healthy liver tissue was developed. Three cases were considered; i) saline infusion into the tumour centre; ii) one-sided saline infusion outside the tumour; and iii) two-sided saline infusion outside the tumour. For each case, three different saline volumes were considered, i.e. 6, 14 and 22 ml. Saline concentration was set to 15% w/v. Numerical results showed that saline infusion into the tumour centre can overcome the butterfly-shaped coagulation only if the infusion volume is sufficient. On the other hand, one-sided infusion outside the tumour did not overcome this. Two-sided infusion outside the tumour produced confluent coagulation zone with the largest volume. Results obtained from the present study suggest that saline infusion, when carried out correctly, can be used to effectively eradicate liver cancer. This presents a practical solution to address non-confluent coagulation zone typical of that during two-probe bRFA treatment.


Assuntos
Ablação por Cateter , Neoplasias Hepáticas , Ablação por Radiofrequência , Humanos , Ablação por Cateter/métodos , Neoplasias Hepáticas/cirurgia , Neoplasias Hepáticas/patologia , Fígado/cirurgia , Solução Salina , Eletrodos
3.
Comput Methods Programs Biomed ; 211: 106436, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34601185

RESUMO

BACKGROUND AND OBJECTIVE: Saline infusion is applied together with radiofrequency ablation (RFA) to enlarge the ablation zone. However, one of the issues with saline-infused RFA is backflow, which spreads saline along the insertion track. This raises the concern of not only thermally ablating the tissue within the backflow region, but also the loss of saline from the targeted tissue, which may affect the treatment efficacy. METHODS: In the present study, 2D axisymmetric models were developed to investigate how saline backflow influence saline-infused RFA and whether the aforementioned concerns are warranted. Saline-infused RFA was described using the dual porosity-Joule heating model. The hydrodynamics of backflow was described using Poiseuille law by assuming the flow to be similar to that in a thin annulus. Backflow lengths of 3, 4.5, 6 and 9 cm were considered. RESULTS: Results showed that there is no concern of thermally ablating the tissue in the backflow region. This is due to the Joule heating being inversely proportional to distance from the electrode to the fourth power. Results also indicated that larger backflow lengths led to larger growth of thermal damage along the backflow region and greater decrease in coagulation volume. Hence, backflow needs to be controlled to ensure an effective treatment of saline-infused RFA. CONCLUSIONS: There is no risk of ablating tissues around the needle insertion track due to backflow. Instead, the risk of underablation as a result of the loss of saline due to backflow was found to be of greater concern.


Assuntos
Ablação por Cateter , Ablação por Radiofrequência , Eletrodos , Fígado/cirurgia , Porosidade
4.
Comput Methods Programs Biomed ; 184: 105289, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31891903

RESUMO

BACKGROUND AND OBJECTIVE: The majority of the studies on radiofrequency ablation (RFA) have focused on enlarging the size of the coagulation zone. An aspect that is crucial but often overlooked is the shape of the coagulation zone. The shape is crucial because the majority of tumours are irregularly-shaped. In this paper, the ability to manipulate the shape of the coagulation zone following saline-infused RFA by altering the location of saline infusion is explored. METHODS: A 3D model of the liver tissue was developed. Saline infusion was described using the dual porosity model, while RFA was described using the electrostatic and bioheat transfer equations. Three infusion locations were investigated, namely at the proximal end, the middle and the distal end of the electrode. Investigations were carried out numerically using the finite element method. RESULTS: Results indicated that greater thermal coagulation was found in the region of tissue occupied by the saline bolus. Infusion at the middle of the electrode led to the largest coagulation volume followed by infusion at the proximal and distal ends. It was also found that the ability to delay roll-off, as commonly associated with saline-infused RFA, was true only for the case when infusion is carried out at the middle. When infused at the proximal and distal ends, the occurrence of roll-off was advanced. This may be due to the rapid and more intense heating experienced by the tissue when infusion is carried out at the electrode ends where Joule heating is dominant. CONCLUSION: Altering the location of saline infusion can influence the shape of the coagulation zone following saline-infused RFA. The ability to 'shift' the coagulation zone to a desired location opens up great opportunities for the development of more precise saline-infused RFA treatment that targets specific regions within the tissue.


Assuntos
Simulação por Computador , Ablação por Radiofrequência , Solução Salina/administração & dosagem , Animais , Análise de Elementos Finitos , Imageamento Tridimensional , Fígado/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA