Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 96(15): 5771-5780, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38563229

RESUMO

Metabolic abnormalities are at the center of many diseases, and the capability to film and quantify the metabolic activities of a single cell is important for understanding the heterogeneities in these abnormalities. In this paper, a functional plasmonic microscope (FPM) is used to image and measure metabolic activities without fluorescent labels at a single-cell level. The FPM can accurately image and quantify the subnanometer membrane fluctuations with a spatial resolution of 0.5 µm in real time. These active cell membrane fluctuations are caused by metabolic activities across the cell membrane. A three-dimensional (3D) morphology of the bottom cell membrane was imaged and reconstructed with FPM to illustrate the capability of the microscope for cell membrane characterization. Then, the subnanometer cell membrane fluctuations of single cells were imaged and quantified with the FPM using HeLa cells. Cell metabolic heterogeneity is analyzed based on membrane fluctuations of each individual cell that is exposed to similar environmental conditions. In addition, we demonstrated that the FPM could be used to evaluate the therapeutic responses of metabolic inhibitors (glycolysis pathway inhibitor STF 31) on a single-cell level. The result showed that the metabolic activities significantly decrease over time, but the nature of this response varies, depicting cell heterogeneity. A low-concentration dose showed a reduced fluctuation frequency with consistent fluctuation amplitudes, while the high-concentration dose showcased a decreasing trend in both cases. These results have demonstrated the capabilities of the functional plasmonic microscope to measure and quantify metabolic activities for drug discovery.


Assuntos
Corantes , Microscopia , Humanos , Células HeLa , Membrana Celular , Membranas
2.
Lab Invest ; 101(9): 1186-1196, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34017058

RESUMO

The lymphatic system plays an integral role in physiology and has recently been identified as a key player in disease progression. Tissue injury stimulates lymphatic expansion, or lymphangiogenesis (LA), though its precise role in disease processes remains unclear. LA is associated with inflammation, which is a key component of acute kidney injury (AKI), for which there are no approved therapies. While LA research has gained traction in the last decade, there exists a significant lack of understanding of this process in the kidney. Though innovative studies have elucidated markers and models with which to study LA, the field is still evolving with ways to visualize lymphatics in vivo. Prospero-related homeobox-1 (Prox-1) is the master regulator of LA and determines lymphatic cell fate through its action on vascular endothelial growth factor receptor expression. Here, we investigate the consequences of AKI on the abundance and distribution of lymphatic endothelial cells using Prox1-tdTomato reporter mice (ProxTom) coupled with large-scale three-dimensional quantitative imaging and tissue cytometry (3DTC). Using these technologies, we describe the spatial dynamics of lymphatic vasculature in quiescence and post-AKI. We also describe the use of lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1) as a marker of lymphatic vessels using 3DTC in the absence of the ProxTom reporter mice as an alternative approach. The use of 3DTC for lymphatic research presents a new avenue with which to study the origin and distribution of renal lymphatic vessels. These findings will enhance our understanding of renal lymphatic function during injury and could inform the development of novel therapeutics for intervention in AKI.


Assuntos
Injúria Renal Aguda , Citometria por Imagem , Imageamento Tridimensional , Vasos Linfáticos , Injúria Renal Aguda/diagnóstico por imagem , Injúria Renal Aguda/metabolismo , Animais , Proteínas de Homeodomínio/metabolismo , Linfangiogênese , Vasos Linfáticos/diagnóstico por imagem , Vasos Linfáticos/metabolismo , Masculino , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas Supressoras de Tumor/metabolismo
3.
ACS Sens ; 6(2): 485-492, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33251805

RESUMO

Many fundamentally important biological phenomena involve the cells to establish and break down the adhesive interactions with the substrate. Here, we report a novel optical method that could directly image the electrochemical impedance of cell-substrate interactions at the single cell level with conventional microscopes and cameras. A thin conductive polymer layer on top of the ITO substrate (poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate), PEDOT:PSS) is used as the impedance imaging and sensing layer. A sinusoidal electrochemical potential is applied to the conductive polymer film, and the ion intercalation and transportation in the PEDOT:PSS layer will change the absorption spectrum of the polymer film. The attachment of the cells to the substrate will block and affect the ion doping and dedoping process, and therefore change the color of the polymer film. This process can be captured by any upright or inverted microscope with a simple camera. Utilizing this method, we have successfully imaged the impedance of single-cell attachment, observed the variations of cell-substrate interactions, and measured the impedance changes at different stages of the attachment process. This paper has proposed and successfully demonstrated a new strategy that translates the electrochemical impedance information to an optical signal that could be imaged and used to quantify the local responses. In addition, this method does not need any specially designed optical setup, which may lead to its broad applications in the clinics and biological research laboratories.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes , Polímeros , Condutividade Elétrica , Impedância Elétrica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...