Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 5333, 2023 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-37660049

RESUMO

Inhibition of glycolysis in immune cells and cancer cells diminishes their activity, and thus combining immunotherapies with glycolytic inhibitors is challenging. Herein, a strategy is presented where glycolysis is inhibited in cancer cells using PFK15 (inhibitor of PFKFB3, rate-limiting step in glycolysis), while simultaneously glycolysis and function is rescued in DCs by delivery of fructose-1,6-biphosphate (F16BP, one-step downstream of PFKFB3). To demonstrate the feasibility of this strategy, vaccine formulations are generated using calcium-phosphate chemistry, that incorporate F16BP, poly(IC) as adjuvant, and phosphorylated-TRP2 peptide antigen and tested in challenging and established YUMM1.1 tumours in immunocompetent female mice. Furthermore, to test the versatility of this strategy, adoptive DC therapy is developed with formulations that incorporate F16BP, poly(IC) as adjuvant and mRNA derived from B16F10 cells as antigens in established B16F10 tumours in immunocompetent female mice. F16BP vaccine formulations rescue DCs in vitro and in vivo, significantly improve the survival of mice, and generate cytotoxic T cell (Tc) responses by elevating Tc1 and Tc17 cells within the tumour. Overall, these results demonstrate that rescuing glycolysis of DCs using metabolite-based formulations can be utilized to generate immunotherapy even in the presence of glycolytic inhibitor.


Assuntos
Imunoterapia , Neoplasias , Feminino , Animais , Camundongos , Glicólise , Adjuvantes Imunológicos/farmacologia , Frutose , Poli I-C , Células Dendríticas
2.
bioRxiv ; 2023 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-37745575

RESUMO

Rheumatoid Arthritis (RA) is a chronic debilitating disease characterized by auto-immune reaction towards self-antigen such as collagen type II. In this study, we investigated the impact of exponentially decreasing levels of antigen exposure on pro-inflammatory T cell responses in the collagen-induced arthritis (CIA) mouse model. Using a controlled delivery experimental approach, we manipulated the collagen type II (CII) antigen concentration presented to the immune system. We observed that exponentially decreasing levels of antigen generated reduced pro-inflammatory T cell responses in secondary lymphoid organs in mice suffering from RA. Specifically, untreated mice exhibited robust pro-inflammatory T cell activation and increased paw inflammation, whereas, mice exposed to exponentially decreasing concentrations of CII demonstrated significantly reduced pro-inflammatory T cell responses, exhibited lower levels of paw inflammation, and decreased arthritis scores in right rear paw. The data also demonstrate that the decreasing antigen levels promoted the induction of regulatory T cells (Tregs), which play a crucial role in maintaining immune tolerance and suppressing excessive inflammatory responses. Our findings highlight the importance of antigen concentration in modulating pro-inflammatory T cell responses in the CIA model. These results provide valuable insights into the potential therapeutic strategies that target antigen presentation to regulate immune responses and mitigate inflammation in rheumatoid arthritis and other autoimmune diseases. Further investigations are warranted to elucidate the specific mechanisms underlying the antigen concentration-dependent modulation of T cell responses and to explore the translational potential of this approach for the development of novel therapeutic interventions in autoimmune disorders.

3.
Biomaterials ; 301: 122292, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37643489

RESUMO

Succinate is an important metabolite that modulates metabolism of immune cells and cancer cells in the tumor microenvironment (TME). Herein, we report that polyethylene succinate (PES) microparticles (MPs) biomaterial mediated controlled delivery of succinate in the TME modulates macrophage responses. Administering PES MPs locally with or without a BRAF inhibitor systemically in an immune-defective aging mice with clinically relevant BRAFV600E mutated YUMM1.1 melanoma decreased tumor volume three-fold. PES MPs in the TME also led to maintenance of M1 macrophages with up-regulation of TSLP and type 1 interferon pathway. Impressively, this led to generation of pro-inflammatory adaptive immune responses in the form of increased T helper type 1 and T helper type 17 cells in the TME. Overall, our findings from this challenging tumor model suggest that immunometabolism-modifying PES MP strategies provide an approach for developing robust cancer immunotherapies.


Assuntos
Melanoma , Ácido Succínico , Animais , Camundongos , Macrófagos Associados a Tumor , Microambiente Tumoral , Proteínas Proto-Oncogênicas B-raf , Succinatos
4.
Biomaterials ; 300: 122204, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37329683

RESUMO

Covalent organic framework (COF) crystalline biomaterials have great potential for drug delivery since they can load large amounts of small molecules (e.g. metabolites) and release them in a controlled manner, as compared to their amorphous counterparts. Herein, we screened different metabolites for their ability to modulate T cell responses in vitro and identified Kynurenine (KyH) as a key metabolite that not only decreases frequency of pro-inflammatory RORgt + T cells but also supports frequency of anti-inflammatory GATA3+ T cells. Moreover, we developed a methodology to generate imine-based TAPB-PDA COF at room temperature and loaded these COFs with KyH. KyH loaded COFs (COF-KyH) were able to then release KyH in a controlled manner for 5 days in vitro. Notably, COF-KyH when delivered orally in mice induced with collagen-induced rheumatoid arthritis (CIA) were able to increase frequency of anti-inflammatory GATA3+CD8+ T cells in the lymph nodes and decrease antibody titers in the serum as compared to the controls. Overall, these data demonstrate that COFs can be an excellent drug delivery vehicle for delivering immune modulating small molecule metabolites.


Assuntos
Artrite Experimental , Estruturas Metalorgânicas , Animais , Camundongos , Artrite Experimental/tratamento farmacológico , Cinurenina , Linfócitos T CD8-Positivos , Modelos Animais de Doenças , Excipientes
5.
Carbohydr Polym ; 302: 120371, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36604050

RESUMO

This study aimed to develop and characterize a novel antibacterial, self-healing hydrogel made from aldehyde-carrageenan. Thus, carrageenan (CA) was first oxidized using different amounts of sodium periodate (NaIO4), and the highest concentration of aldehyde was obtained when the ratio of NaIO4 to CA was 1.5:1. Using dopamine (PDA) and zinc ions (Zn2+), various hydrogels were synthesized from oxidized carrageenan (O-CA). The effects of dopamine and zinc ions on the properties of O-CA hydrogel were examined. According to Fourier Transform Infrared Spectroscopy (FTIR) studies, the hydrogel's components are linked by Schiff bases, hydrogen bonds, and ion complexes. The rheological tests confirmed that hydrogels were elastic gels, not viscous sol, and were able to recover rapidly. Adding zinc to the hydrogel reduced weight loss (38 %) and provided extra antibacterial properties, particularly against E. coli. In addition, collagen secretion and cell attachment to Zn-containing hydrogels were significantly increased, and fibroblast viability reached 118 %. Overall, a hybrid O-CA/PDA/Zn hydrogel has excellent potential for wound healing applications.


Assuntos
Escherichia coli , Hidrogéis , Hidrogéis/farmacologia , Hidrogéis/química , Carragenina/química , Aldeídos/farmacologia , Dopamina/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Cicatrização , Zinco/farmacologia
6.
Bioact Mater ; 24: 153-170, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36606252

RESUMO

Alloy based implants have made a great impact in the clinic and in preclinical research. Immune responses are one of the major causes of failure of these implants in the clinic. Although the immune responses toward non-degradable alloy implants are well documented, there is a poor understanding of the immune responses against degradable alloy implants. Recently, there have been several reports suggesting that degradable implants may develop substantial immune responses. This phenomenon needs to be further studied in detail to make the case for the degradable implants to be utilized in clinics. Herein, we review these new recent reports suggesting the role of innate and potentially adaptive immune cells in inducing immune responses against degradable implants. First, we discussed immune responses to allergen components of non-degradable implants to give a better overview on differences in the immune response between non-degradable and degradable implants. Furthermore, we also provide potential areas of research that can be undertaken that may shed light on the local and global immune responses that are generated in response to degradable implants.

7.
Adv Drug Deliv Rev ; 184: 114242, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35367306

RESUMO

Drug delivery vehicles have made a great impact on cancer immunotherapies in clinics and pre-clinical research. Notably, the science of delivery of cancer vaccines and immunotherapeutics, modulating immune cell functions has inspired development of several successful companies and clinical products. Interestingly, these drug delivery modalities not only modulate the function of immune cells (often quantified at the mRNA and protein levels), but also modulate the metabolism of these cells. Specifically, cancer immunotherapy often leads to activation of different immune cells such as dendritic cells, macrophages and T cells, which is driven by energy metabolism of these cells. Recently, there has been a great excitement about interventions that can directly modulate the energy metabolism of these immune cells and thus affect their function and in turn lead to a robust cancer immune response. Here we review few strategies that have been tested in clinic and pre-clinical research for generating effective metabolism-associated cancer therapies and immunotherapies.


Assuntos
Vacinas Anticâncer , Neoplasias , Vacinas Anticâncer/uso terapêutico , Sistemas de Liberação de Medicamentos , Humanos , Imunoterapia , Neoplasias/tratamento farmacológico , Linfócitos T
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...