Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2228, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472188

RESUMO

Methanol-to-hydrocarbons (MTH) process has been considered one of the most practical approaches for producing value-added products from methanol. However, the commonly used zeolite catalysts suffer from rapid deactivation due to coke deposition and require regular regeneration treatments. We demonstrate that low-melting-point metals, such as Ga, can effectively promote more stable methanol conversion in the MTH process by slowing coke deposition and facilitating the desorption of carbonaceous species from the zeolite. The ZSM-5 zeolite physically mixed with liquid gallium exhibited an enhanced lifetime in the MTH reaction, which increased by a factor of up to ~14 as compared to the parent ZSM-5. These results suggest an alternative route to the design and preparation of deactivation-resistant zeolite catalysts.

2.
J Am Chem Soc ; 145(2): 1185-1193, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36592344

RESUMO

Direct functionalization of methane selectively to value-added chemicals is still one of the main challenges in modern science. Acetic acid is an important industrial chemical produced nowadays by expensive and environmentally unfriendly carbonylation of methanol using homogeneous catalysts. Here, we report a new photocatalytic reaction route to synthesize acetic acid from CH4 and CO at room temperature using water as the sole external oxygen source. The optimized photocatalyst consists of a TiO2 support and ammonium phosphotungstic polyoxometalate (NPW) clusters anchored with isolated Pt single atoms (Pt1). It enables a stable synthesis of 5.7 mmol·L-1 acetic acid solution in 60 h with the selectivity over 90% and 66% to acetic acid on liquid-phase and carbon basis, respectively, with the production of 99 mol of acetic acid per mol of Pt. Combined isotopic and in situ spectroscopy investigation suggests that synthesis of acetic acid proceeds via a photocatalytic oxidative carbonylation of methane over the Pt1 sites, with the methane activation facilitated by water-derived hydroxyl radicals.


Assuntos
Ácido Acético , Metano , Metano/química , Ácido Acético/química , Água , Oxidantes , Temperatura
3.
Chem Soc Rev ; 51(18): 7994-8044, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36043509

RESUMO

Light olefins are important feedstocks and platform molecules for the chemical industry. Their synthesis has been a research priority in both academia and industry. There are many different approaches to the synthesis of these compounds, which differ by the choice of raw materials, catalysts and reaction conditions. The goals of this review are to highlight the most recent trends in light olefin synthesis and to perform a comparative analysis of different synthetic routes using several quantitative characteristics: selectivity, productivity, severity of operating conditions, stability, technological maturity and sustainability. Traditionally, on an industrial scale, the cracking of oil fractions has been used to produce light olefins. Methanol-to-olefins, alkane direct or oxidative dehydrogenation technologies have great potential in the short term and have already reached scientific and technological maturities. Major progress should be made in the field of methanol-mediated CO and CO2 direct hydrogenation to light olefins. The electrocatalytic reduction of CO2 to light olefins is a very attractive process in the long run due to the low reaction temperature and possible use of sustainable electricity. The application of modern concepts such as electricity-driven process intensification, looping, CO2 management and nanoscale catalyst design should lead in the near future to more environmentally friendly, energy efficient and selective large-scale technologies for light olefin synthesis.


Assuntos
Dióxido de Carbono , Fósseis , Alcanos , Alcenos/química , Dióxido de Carbono/química , Metanol
4.
Chem Commun (Camb) ; 58(65): 9148-9151, 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-35894235

RESUMO

COF-LZU1 with nanotube-like morphology has been synthesized with high crystallinity and pore volume in the presence of trimesic acid as a template. The as-synthesized COF nanotubes consist of a stack of plates with a diameter of about 100 nm with a hollow channel inside of about 20 nm.

5.
Angew Chem Int Ed Engl ; 60(22): 12513-12523, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-33730419

RESUMO

The cleavage of C-O linkages in aryl ethers in biomass-derived lignin compounds without hydrogenation of the aromatic rings is a major challenge for the production of sustainable mono-aromatics. Conventional strategies over the heterogeneous metal catalysts require the addition of homogeneous base additives causing environmental problems. Herein, we propose a heterogeneous Ru/C catalyst modified by Br atoms for the selective direct cleavage of C-O bonds in diphenyl ether without hydrogenation of aromatic rings reaching the yield of benzene and phenol as high as 90.3 % and increased selectivity to mono-aromatics (97.3 vs. 46.2 % for initial Ru) during depolymerization of lignin. Characterization of the catalyst indicates selective poisoning by Br of terrace sites over Ru nanoparticles, which are active in the hydrogenation of aromatic rings, while the defect sites on the edges and corners remain available and provide higher intrinsic activity in the C-O bond cleavage.

6.
Chem Soc Rev ; 50(4): 2337-2366, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33393529

RESUMO

Fischer-Tropsch synthesis (FTS) is an essential approach to convert coal, biomass, and shale gas into fuels and chemicals, such as lower olefins, gasoline, diesel, and so on. In recent years, there has been increasing motivation to deploy FTS at commercial scales which has been boosting the discovery of high performance catalysts. In particular, the importance of support in modulating the activity of metals has been recognized and carbonaceous materials have attracted attention as supports for FTS. In this review, we summarised the substantial progress in the preparation of carbon-based catalysts for FTS by applying activated carbon (AC), carbon nanotubes (CNTs), carbon nanofibers (CNFs), carbon spheres (CSs), and metal-organic frameworks (MOFs) derived carbonaceous materials as supports. A general assessment of carbon-based catalysts for FTS, concerning the support and metal properties, activity and products selectivity, and their interactions is systematically discussed. Finally, current challenges and future trends in the development of carbon-based catalysts for commercial utilization in FTS are proposed.

7.
Nat Rev Chem ; 5(8): 564-579, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37117584

RESUMO

Carbon dioxide (CO2) is the iconic greenhouse gas and the major factor driving present global climate change, incentivizing its capture and recycling into valuable products and fuels. The 6H+/6e- reduction of CO2 affords CH3OH, a key compound that is a fuel and a platform molecule. In this Review, we compare different routes for CO2 reduction to CH3OH, namely, heterogeneous and homogeneous catalytic hydrogenation, as well as enzymatic catalysis, photocatalysis and electrocatalysis. We describe the leading catalysts and the conditions under which they operate, and then consider their advantages and drawbacks in terms of selectivity, productivity, stability, operating conditions, cost and technical readiness. At present, heterogeneous hydrogenation catalysis and electrocatalysis have the greatest promise for large-scale CO2 reduction to CH3OH. The availability and price of sustainable electricity appear to be essential prerequisites for efficient CH3OH synthesis.

8.
Chem Sci ; 11(24): 6167-6182, 2020 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-32953012

RESUMO

Liquid metals are a new emerging and rapidly growing class of materials and can be considered as efficient promoters and active phases for heterogeneous catalysts for sustainable processes. Because of low cost, high selectivity and flexibility, iron-based catalysts are the catalysts of choice for light olefin synthesis via Fischer-Tropsch reaction. Promotion of iron catalysts supported by carbon nanotubes with bismuth, which is liquid under the reaction conditions, results in a several fold increase in the reaction rate and in a much higher light olefin selectivity. In order to elucidate the spectacular enhancement of the catalytic performance, we conducted extensive in-depth characterization of the bismuth-promoted iron catalysts under the reacting gas and reaction temperatures by a combination of cutting-edge in situ techniques: in situ scanning transmission electron microscopy, near-atmospheric pressure X-ray photoelectron spectroscopy and in situ X-ray adsorption near edge structure. In situ scanning transmission electron microscopy conducted under atmospheric pressure of carbon monoxide at the temperature of catalyst activation showed iron sintering proceeding via the particle migration and coalescence mechanism. Catalyst activation in carbon monoxide and in syngas leads to liquid bismuth metallic species, which readily migrate over the catalyst surface with the formation of larger spherical bismuth droplets and iron-bismuth core-shell structures. In the working catalysts, during Fischer-Tropsch synthesis, metallic bismuth located at the interface of iron species undergoes continuous oxidation and reduction cycles, which facilitate carbon monoxide dissociation and result in the substantial increase in the reaction rate.

9.
Chem Commun (Camb) ; 56(2): 277-280, 2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31807743

RESUMO

In the present communication, we uncovered the aqueous phase Fischer-Tropsch reaction over rhodium catalysts. The reaction results in the synthesis and consecutive separation of hydrocarbons and oxygenates into two phases. Use of a rhodium Schiff base complex as a precursor for catalyst preparation allows efficient control of the Rh metal nanoparticle size distribution and leads to higher alcohol selectivity.

10.
Nat Commun ; 10(1): 700, 2019 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-30741940

RESUMO

Chemical utilization of vast fossil and renewable feedstocks of methane remains one of the most important challenges of modern chemistry. Herein, we report direct and selective methane photocatalytic oxidation at ambient conditions into carbon monoxide, which is an important chemical intermediate and a platform molecule. The composite catalysts on the basis of zinc, tungstophosphoric acid and titania exhibit exceptional performance in this reaction, high carbon monoxide selectivity and quantum efficiency of 7.1% at 362 nm. In-situ Fourier transform infrared and X-ray photoelectron spectroscopy suggest that the catalytic performance can be attributed to zinc species highly dispersed on tungstophosphoric acid /titania, which undergo reduction and oxidation cycles during the reaction according to the Mars-van Krevelen sequence. The reaction proceeds via intermediate formation of surface methyl carbonates.

11.
Nanoscale Adv ; 1(11): 4321-4330, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36134426

RESUMO

The photocatalytic conversion of CO2 not only reduces the greenhouse effect, but also provides value-added solar fuels and chemicals. Herein, we report the design of new efficient core-shell nanocomposites for selective photocatalytic CO2 to CO conversion, which occurs at ambient temperature. A combination of characterization techniques (TEM, STEM-EDX, XPS, XRD, FTIR photoluminescence) indicates that the CO2 reduction occurs over zinc species highly dispersed on the heteropolyacid/titania core-shell nanocomposites. These core-shell structures create a semiconductor heterojunction, which increases charge separation and the lifetime of charge carriers' and leads to higher electron flux. In situ FTIR investigation of the reaction mechanism revealed that the reaction involved surface zinc bicarbonates as key reaction intermediates. In a series of catalysts containing noble and transition metals, zinc phosphotungstic acid-titania nanocomposites exhibit high activity reaching 50 µmol CO g-1 h-1 and selectivity (73%) in the CO2 photocatalytic reduction to CO at ambient temperature. The competitive water splitting reaction has been significantly suppressed over the Zn sites in the presence of CO2.

13.
Chem Commun (Camb) ; 47(38): 10767-9, 2011 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-21874176

RESUMO

Addition of ß-cyclodextrin during catalyst preparation strongly affects the structure and catalytic performance of alumina supported cobalt catalysts for Fischer-Tropsch synthesis. Impregnation of the support with solutions containing ß-cyclodextrin leads to higher metal dispersion and spectacularly enhances both reaction rate and heavy hydrocarbons productivity in Fischer-Tropsch synthesis.


Assuntos
Óxido de Alumínio/química , Cobalto/química , beta-Ciclodextrinas/química , Catálise , Espectroscopia por Absorção de Raios X
14.
Chem Commun (Camb) ; 46(5): 788-90, 2010 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-20087521

RESUMO

The structure-activity relations in the alumina-supported cobalt catalysts are studied at the realistic conditions of Fischer-Tropsch synthesis using in situ time-resolved XRD and catalytic measurements. Cobalt sintering during the first 3-5 h of the reaction and cobalt carbidisation at a longer time on stream (>8 h) coincide with catalyst deactivation.

15.
Adv Colloid Interface Sci ; 142(1-2): 67-74, 2008 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-18599009

RESUMO

This work presents an overview of the data obtained for SBA-15 synthesis under the reaction conditions using synchrotron based small angle X-ray scattering and small angle neutron scattering. Three major stages in the synthesis of SBA-15 materials proceeding according to the cooperative self-assembly mechanism have been identified, and the structures of the intermediates species have been established. Our in situ time-resolved neutron scattering experiments demonstrate that only spherical micelles of the templating agent are present in the synthesis mixture during the first stage of the reaction. According to the neutron scattering and X-ray scattering data, in the second stage of the reaction the formation of hybrid organic-inorganic micelles is accompanied with the transformation from spherical to cylindrical micelles, which takes place before the precipitation of the ordered SBA-15 phase. During the third stage, these micelles aggregate into a two-dimensional hexagonal structure, confirming that the precipitation takes place as the result of self-assembly of the hybrid cylindrical micelles. As the synthesis proceeds, the voids between the cylinders are filled with the silicate species which undergo condensation reactions resulting in cross-linking and covalent bonding, leading to the formation of highly ordered SBA-15 mesostructure. This work demonstrates that valuable structural information can be obtained from X-ray and neutron scattering characterisation of complex systems containing periodic phases with d-spacing values up to 30 nm, and that both techniques are powerful means for in situ monitoring of the formation of nanostructured materials.


Assuntos
Dióxido de Silício/síntese química , Cinética , Difração de Nêutrons , Espalhamento a Baixo Ângulo , Dióxido de Silício/química , Difração de Raios X
18.
Chem Commun (Camb) ; (8): 834-6, 2007 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-17308647

RESUMO

Time-resolved in situ SANS investigations have provided direct experimental evidence for the three initial steps in the formation of the SBA-15 mesoporous material: an induction period is followed by a shape transformation of the micelles from spherical to cylindrical ones followed by the precipitation of a two-dimensional hexagonal phase.


Assuntos
Dióxido de Silício/química , Espectroscopia de Ressonância de Spin Eletrônica , Indicadores e Reagentes , Espectroscopia de Ressonância Magnética , Micelas , Microscopia Eletrônica de Transmissão , Conformação Molecular , Peso Molecular , Nêutrons , Espalhamento de Radiação , Espectrofotometria Infravermelho , Raios X
19.
J Phys Chem B ; 109(48): 22780-90, 2005 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-16853968

RESUMO

The initial stages of SBA-15 synthesis have been studied by using in situ time-resolved small-angle X-ray scattering with a synchrotron radiation source. The quantitative analysis of X-ray scattering and diffraction intensities allows the structures of intermediates to be identified at the different stages of SBA-15 synthesis. Following tetraethylorthosilicate (TEOS) addition, an intense small-angle scattering and an associated secondary maximum are observed, which are attributed to non-interacting surfactant template micelles encrusted with silicate species. After 25-30 min of the reaction, the broad scattering disappears and narrow Bragg diffraction peaks typical of hexagonally ordered structure are observed. The cylindrical micelles identified from X-ray scattering data appear to be the direct precursors of 2D hexagonal SBA-15 structure. Just after the formation of the SBA-15 hexagonal phase, the cylindrical micelles are only weakly linked in the hexagonal structure. As the synthesis proceeds, the solvent in the void volume between the cylindrical micelles is gradually replaced by more dense silicate species. The unit cell parameter of SBA-15 is progressively decreasing during the SBA-15 synthesis, which can be related to the condensation and densification of silicate fragments in the spaces between the cylinders. The volume fraction of the 2D hexagonally ordered phase is sharply growing during the first 2 h of the reaction. The inner core radius of SBA-15 material remains almost constant during the whole synthesis and is principally affected by the size of the poly(propylene oxide) inner core in the original cylindrical micelles.


Assuntos
Espalhamento a Baixo Ângulo , Dióxido de Silício/química , Dióxido de Silício/síntese química , Difração de Raios X , Biologia Computacional/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...