Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 48(18): 4753-4756, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37707894

RESUMO

Advancing ultrafast high-repetition-rate lasers to shortest pulse durations comprising only a few optical cycles while pushing their energy into the multi-millijoule regime opens a route toward terawatt-class peak powers at unprecedented average power. We explore this route via efficient post-compression of high-energy 1.2 ps pulses from an ytterbium InnoSlab laser to 9.6 fs duration using gas-filled multi-pass cells (MPCs) at a repetition rate of 1 kHz. Employing dual-stage compression with a second MPC stage supporting a close-to-octave-spanning bandwidth enabled by dispersion-matched dielectric mirrors, a record compression factor of 125 is reached at 70% overall efficiency, delivering 6.7 mJ pulses with a peak power of ∼0.3 TW. Moreover, we show that post-compression can improve the temporal contrast at multi-picosecond delay by at least one order of magnitude. Our results demonstrate efficient conversion of multi-millijoule picosecond lasers to high-peak-power few-cycle sources, prospectively opening up new parameter regimes for laser plasma physics, high energy physics, biomedicine, and attosecond science.

2.
Opt Express ; 29(4): 5915-5922, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33726123

RESUMO

We experimentally demonstrate the post-compression of radially polarized 25 fs pulses at 800 nm central wavelength in a multiple thin plate arrangement for the first time, to the best of our knowledge. Sub-7 fs pulses with 90 µJ energy were obtained after dispersion compensation, corresponding to a compression factor of more than 3.5. Preservation of radial polarization state was confirmed by polarized intensity distribution measurements. Linear projections of the radially polarized pulses were also fully characterized in the temporal domain.

3.
Opt Lett ; 41(19): 4441-4444, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27749850

RESUMO

Recompressed pulses from Ti:sapphire chirped-pulse lasers are accompanied by a slowly decaying post-pulse pedestal that is coherent with the main pulse. The pedestal typically consists of numerous pulses with temporal separation in the picosecond range. The source of this artifact lies in the Ti:sapphire active medium itself, both in the Kerr-lens mode-locked oscillator and in subsequent amplifiers. In the presence of substantial self-phase modulation, after recompression the post-pedestal generates a mirror-symmetric pre-pulse pedestal. This pedestal severely degrades the leading edge of the output pulse. This degradation is far more limiting than the original post-pedestal and severely lowers the achievable temporal contrast.

4.
Opt Lett ; 41(13): 3017-20, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27367090

RESUMO

The combination of the extraction during pumping (EDP) amplification scheme and the thin disk (TD) technology has been successfully applied to the Ti:sapphire (Ti:sa) laser medium for the first time, to the best of our knowledge. In a proof-of-principle experiment, we demonstrate high energy broadband amplification in a room temperature water cooled EDP-TD head of stretched femtosecond pulses at a 10 Hz repetition rate, instead of performing a cryogenically cooled traditional multi-pass scheme. Hence, the EDP-TD combination can overcome the limits associated with thermal effects and transverse amplified spontaneous emission, enabling Ti:sa laser systems to have a petawatt peak and hundreds of watts of average power.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...