Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Cancer Res ; 26(24): 6437-6444, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33028595

RESUMO

PURPOSE: Multisite stereotactic body radiotherapy followed by pembrolizumab (SBRT+P) has demonstrated safety in advanced solid tumors (ASTs). However, no studies have examined the relationships between irradiated tumor response, SBRT-induced tumor gene expression, and overall survival (OS). PATIENTS AND METHODS: Patients with AST received SBRT (30-50 Gy in 3-5 fractions) to two to four metastases followed by pembrolizumab (200 mg i.v. every 3 weeks). SBRT was prescribed to a maximum tumor volume of 65 mL. Small metastases received the complete prescribed coverage (complete-Rx), while larger metastases received partial coverage (partial-Rx). Treated metastasis control (TMC) was defined as a lack of progression for an irradiated metastasis. Landmark analysis was used to assess the relationship between TMC and OS. Thirty-five biopsies were obtained from 24 patients: 19 pre-SBRT and 16 post-SBRT (11 matched) prior to pembrolizumab and were analyzed via RNA microarray. RESULTS: Sixty-eight patients (139 metastases) were enrolled with a median follow-up of 10.4 months. One-year TMC was 89.5% with no difference between complete-Rx or partial-Rx. On multivariable analysis, TMC was independently associated with a reduced risk for death (HR, 0.36; 95% confidence interval, 0.17-0.75; P = 0.006). SBRT increased expression of innate and adaptive immune genes and concomitantly decreased expression of cell cycle and DNA repair genes in the irradiated tumors. Elevated post-SBRT expression of DNASE1 correlated with increased expression of cytolytic T-cell genes and irradiated tumor response. CONCLUSIONS: In the context of SBRT+P, TMC independently correlates with OS. SBRT impacts intratumoral immune gene expression associated with TMC. Randomized trials are needed to validate these findings.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Biomarcadores Tumorais/genética , Quimiorradioterapia/mortalidade , Neoplasias/mortalidade , Radiocirurgia/mortalidade , Antineoplásicos Imunológicos/uso terapêutico , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Neoplasias/genética , Neoplasias/patologia , Neoplasias/terapia , Prognóstico , Taxa de Sobrevida
2.
Proc Natl Acad Sci U S A ; 117(36): 22423-22429, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32848073

RESUMO

Metastases are the cause of the vast majority of cancer deaths. In the metastatic process, cells migrate to the vasculature, intravasate, extravasate, and establish metastatic colonies. This pattern of spread requires the cancer cells to change shape and to navigate tissue barriers. Approaches that block this mechanical program represent new therapeutic avenues. We show that 4-hydroxyacetophenone (4-HAP) inhibits colon cancer cell adhesion, invasion, and migration in vitro and reduces the metastatic burden in an in vivo model of colon cancer metastasis to the liver. Treatment with 4-HAP activates nonmuscle myosin-2C (NM2C) (MYH14) to alter actin organization, inhibiting the mechanical program of metastasis. We identify NM2C as a specific therapeutic target. Pharmacological control of myosin isoforms is a promising approach to address metastatic disease, one that may be readily combined with other therapeutic strategies.


Assuntos
Acetofenonas/farmacologia , Actomiosina/metabolismo , Citoesqueleto , Metástase Neoplásica/fisiopatologia , Actinas/metabolismo , Animais , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Feminino , Células HCT116 , Humanos , Camundongos , Camundongos Nus
3.
Nat Commun ; 11(1): 2354, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32393794

RESUMO

Death due to sepsis remains a persistent threat to critically ill patients confined to the intensive care unit and is characterized by colonization with multi-drug-resistant healthcare-associated pathogens. Here we report that sepsis in mice caused by a defined four-member pathogen community isolated from a patient with lethal sepsis is associated with the systemic suppression of key elements of the host transcriptome required for pathogen clearance and decreased butyrate expression. More specifically, these pathogens directly suppress interferon regulatory factor 3. Fecal microbiota transplant (FMT) reverses the course of otherwise lethal sepsis by enhancing pathogen clearance via the restoration of host immunity in an interferon regulatory factor 3-dependent manner. This protective effect is linked to the expansion of butyrate-producing Bacteroidetes. Taken together these results suggest that fecal microbiota transplantation may be a treatment option in sepsis associated with immunosuppression.


Assuntos
Transplante de Microbiota Fecal , Imunidade , Sepse/imunologia , Sepse/terapia , Animais , Ácido Butírico/metabolismo , Fezes/química , Microbioma Gastrointestinal , Trato Gastrointestinal/patologia , Inibidores de Histona Desacetilases/farmacologia , Humanos , Fator Regulador 3 de Interferon/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Sepse/microbiologia , Transdução de Sinais , Transcrição Gênica
4.
Nat Commun ; 10(1): 3959, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31477729

RESUMO

Successful combinations of radiotherapy and immunotherapy depend on the presence of live T cells within the tumor; however, radiotherapy is believed to damage T cells. Here, based on longitudinal in vivo imaging and functional analysis, we report that a large proportion of T cells survive clinically relevant doses of radiation and show increased motility, and higher production of interferon gamma, compared with T cells from unirradiated tumors. Irradiated intratumoral T cells can mediate tumor control without newly-infiltrating T cells. Transcriptomic analysis suggests T cell reprogramming in the tumor microenvironment and similarities with tissue-resident memory T cells, which are more radio-resistant than circulating/lymphoid tissue T cells. TGFß is a key upstream regulator of T cell reprogramming and contributes to intratumoral Tcell radio-resistance. These findings have implications for the design of radio-immunotherapy trials in that local irradiation is not inherently immunosuppressive, and irradiation of multiple tumors might optimize systemic effects of radiotherapy.


Assuntos
Imunoterapia/métodos , Linfócitos do Interstício Tumoral/metabolismo , Neoplasias Experimentais/terapia , Radioterapia/métodos , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Sobrevivência Celular/genética , Terapia Combinada , Perfilação da Expressão Gênica/métodos , Interferon gama/imunologia , Interferon gama/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Neoplasias Experimentais/genética , Neoplasias Experimentais/imunologia , Tolerância a Radiação/genética
5.
Biomaterials ; 210: 94-104, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31060867

RESUMO

Though early detection and treatment of primary tumors has significantly improved in recent years, metastatic disease remains among the most significant challenges in cancer therapy. Cancer cells can disseminate before the primary tumor is detected to form micro or gross metastases, requiring toxic systemic therapies. To prevent and suppress metastases, we have developed a nontoxic, long-circulating nanoscale coordination polymer (NCP) protecting microRNA (miRNA) in circulation and releasing it in tumors. PtIV(en)2 [en = ethylenediamine] containing NCPs (PtEN) can release a nontoxic, kinetically inert PtII(en)2 compound and carbon dioxide which aids the endosomal escape of its miRNA cargo, miR-655-3p. Without the presence of the PtEN core, the miRNA showed cellular uptake but no effect. When transfected into human colorectal HCT116 cells by NCPs, this oligometastatic miRNA limited proliferation and epithelial-to-mesenchymal transition by preventing ß-catenin nuclear translocation and tumor cell invasion. Systemic administrations of PtEN/miR-655-3p sustained effective transfection to reduce liver colonization and tumor burden in a xenogenic hepatic metastatic model of HCT116 without any observable toxicity.


Assuntos
Neoplasias Colorretais/secundário , Transição Epitelial-Mesenquimal , Técnicas de Transferência de Genes , Neoplasias Hepáticas/patologia , MicroRNAs/administração & dosagem , Nanopartículas/química , Polímeros/química , Animais , Adesão Celular , Proliferação de Células , Endossomos/metabolismo , Células HCT116 , Humanos , Camundongos Endogâmicos BALB C , MicroRNAs/genética , Invasividade Neoplásica , Metástase Neoplásica , PTEN Fosfo-Hidrolase/metabolismo , beta Catenina/metabolismo
6.
Cancer Res ; 79(10): 2536-2548, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30940658

RESUMO

Alkylating chemotherapy is a central component of the management of glioblastoma (GBM). Among the factors that regulate the response to alkylation damage, NF-κB acts to both promote and block cytotoxicity. In this study, we used genome-wide expression analysis in U87 GBM to identify NF-κB-dependent factors altered in response to temozolomide and found the long noncoding RNA (lncRNA) MALAT1 as one of the most significantly upregulated. In addition, we demonstrated that MALAT1 expression was coregulated by p50 (p105) and p53 via novel κB- and p53-binding sites in the proximal MALAT1 coding region. Temozolomide treatment inhibited p50 recruitment to its cognate element as a function of Ser329 phosphorylation while concomitantly increasing p53 recruitment. Moreover, luciferase reporter studies demonstrated that both κB and p53 cis-elements were required for efficient transactivation in response to temozolomide. Depletion of MALAT1 sensitized patient-derived GBM cells to temozolomide cytotoxicity, and in vivo delivery of nanoparticle-encapsulated anti-MALAT1 siRNA increased the efficacy of temozolomide in mice bearing intracranial GBM xenografts. Despite these observations, in situ hybridization of GBM specimens and analysis of publicly available datasets revealed that MALAT1 expression within GBM tissue was not prognostic of overall survival. Together, these findings support MALAT1 as a target for chemosensitization of GBM and identify p50 and p52 as primary regulators of this ncRNA. SIGNIFICANCE: These findings identify NF-κB and p53 as regulators of the lncRNA MALAT1 and suggest MALAT1 as a potential target for the chemosensitization of GBM.


Assuntos
Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/metabolismo , Glioblastoma/tratamento farmacológico , NF-kappa B/metabolismo , RNA Longo não Codificante/biossíntese , Temozolomida/uso terapêutico , Proteína Supressora de Tumor p53/metabolismo , Animais , Linhagem Celular Tumoral , Dano ao DNA/genética , Técnicas de Silenciamento de Genes , Glioblastoma/metabolismo , Humanos , Masculino , Camundongos , Camundongos Nus , Prognóstico , RNA Longo não Codificante/genética , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Int Rev Cell Mol Biol ; 344: 31-89, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30798990

RESUMO

DNA damage has been considered the primary action of ionizing radiation (IR) in normal and tumor cells resulting in cell autonomous death. However, recent findings have elucidated novel local and systemic effects of IR mediated by the induction of Type I interferons (IFN) and activation of adaptive immune responses. These responses are initiated by DNA- and RNA-dependent activation of pattern recognition receptors (PRR) which comprise an innate immunity system responsible for detection of exogenous pathogens, mounting of an anti-viral response, and activation of adaptive immunity. Activation of cytoplasmic RNA sensors by endogenous dsRNAs has emerged as an important mechanism of tumor cell-intrinsic Type I IFN induction in the response to genotoxic therapies. The fact that an effective anti-tumor effect of IR and chemotherapy response is dependent on the RNA sensing pathways indicates that tumor cells are equipped by functional innate immunity system which recognizes genotoxic stress insult as an intrusion of exogenous RNA pathogens. This indicates that DNA damage leads to the RNA stress, which is recognized as danger-associated molecular patterns (DAMPs) presented by aberrant RNA molecules interacting with cytoplasmic RNA sensors. In the current review, we will discuss the mechanistic bases for RNA-dependent innate responses in tumor cells, RNA ligands recognized as DAMPs, and the potential implications of these findings to improve cancer therapies.


Assuntos
Espaço Intracelular/metabolismo , Mamíferos/metabolismo , Neoplasias/terapia , RNA de Cadeia Dupla/metabolismo , Estresse Fisiológico , Alarminas/metabolismo , Animais , Humanos
8.
Cancer Res ; 79(7): 1465-1479, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30482772

RESUMO

Given the integral role of stimulator of interferon genes (STING, TMEM173) in the innate immune response, its loss or impairment in cancer is thought to primarily affect antitumor immunity. Here we demonstrate a role for STING in the maintenance of cellular homeostasis through regulation of the cell cycle. Depletion of STING in human and murine cancer cells and tumors resulted in increased proliferation compared with wild-type controls. Microarray analysis revealed genes involved in cell-cycle regulation are differentially expressed in STINGko compared with WT MEFs. STING-mediated regulation of the cell cycle converged on NFκB- and p53-driven activation of p21. The absence of STING led to premature activation of cyclin-dependent kinase 1 (CDK1), early onset to S-phase and mitosis, and increased chromosome instability, which was enhanced by ionizing radiation. These results suggest a pivotal role for STING in maintaining cellular homeostasis and response to genotoxic stress. SIGNIFICANCE: These findings provide clear mechanistic understanding of the role of STING in cell-cycle regulation, which may be exploited in cancer therapy because most normal cells express STING, while many tumor cells do not.See related commentary by Gius and Zhu, p. 1295.


Assuntos
Imunidade Inata , Proteínas de Membrana/genética , Animais , Proliferação de Células , Instabilidade Cromossômica , Homeostase , Humanos , Camundongos
9.
Cancer Res ; 79(3): 650-662, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30538122

RESUMO

Expression of 14q32-encoded miRNAs is a favorable prognostic factor in patients with metastatic cancer. In this study, we used genomic inhibition of DNA methylation through disruption of DNA methyltransferases DNMT1 and DNMT3B and pharmacologic inhibition with 5-Aza-2'-deoxycytidine (5-Aza-dC, decitabine) to demonstrate that DNA methylation predominantly regulates expression of metastasis-suppressive miRNAs in the 14q32 cluster. DNA demethylation facilitated CCCTC-binding factor (CTCF) recruitment to the maternally expressed gene 3 differentially methylated region (MEG3-DMR), which acts as a cis-regulatory element for 14q32 miRNA expression. 5-Aza-dC activated demethylation of the MEG3-DMR and expression of 14q32 miRNAs, which suppressed adhesion, invasion, and migration (AIM) properties of metastatic tumor cells. Cancer cells with MEG3-DMR hypomethylation exhibited constitutive expression of 14q32 miRNAs and resistance to 5-Aza-dC-induced suppression of AIM. Expression of methylation-dependent 14q32 miRNAs suppressed metastatic colonization in preclinical models of lung and liver metastasis and correlated with improved clinical outcomes in patients with metastatic cancer. These findings implicate epigenetic modification via DNA methylation in the regulation of metastatic propensity through miRNA networks and identify a previously unrecognized action of decitabine on the activation of metastasis-suppressive miRNAs. SIGNIFICANCE: This study investigates epigenetic regulation of metastasis-suppressive miRNAs and the effect on metastasis.


Assuntos
Cromossomos Humanos Par 14 , Metilação de DNA , MicroRNAs/genética , Animais , Azacitidina/farmacologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , DNA (Citosina-5-)-Metiltransferase 1/antagonistas & inibidores , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HCT116 , Xenoenxertos , Humanos , Neoplasias Hepáticas/secundário , Células MCF-7 , Camundongos , Camundongos Nus , MicroRNAs/biossíntese , Metástase Neoplásica , RNA Longo não Codificante/biossíntese , RNA Longo não Codificante/genética , DNA Metiltransferase 3B
10.
Nat Commun ; 9(1): 4827, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30425251

RESUMO

In the originally published version of this Article, the affiliation details for Kevin P. White inadvertently omitted 'Tempus Labs, Chicago, IL, 60654, USA'. This has now been corrected in both the PDF and HTML versions of the Article.

11.
Nat Commun ; 9(1): 1793, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29728604

RESUMO

The oligometastasis hypothesis suggests a spectrum of metastatic virulence where some metastases are limited in extent and curable with focal therapies. A subset of patients with metastatic colorectal cancer achieves prolonged survival after resection of liver metastases consistent with oligometastasis. Here we define three robust subtypes of de novo colorectal liver metastasis through integrative molecular analysis. Patients with metastases exhibiting MSI-independent immune activation experience the most favorable survival. Subtypes with adverse outcomes demonstrate VEGFA amplification in concert with (i) stromal, mesenchymal, and angiogenic signatures, or (ii) exclusive NOTCH1 and PIK3C2B mutations with E2F/MYC activation. Molecular subtypes complement clinical risk stratification to distinguish low-risk, intermediate-risk, and high-risk patients with 10-year overall survivals of 94%, 45%, and 19%, respectively. Our findings provide a framework for integrated classification and treatment of metastasis and support the biological basis of curable oligometastatic colorectal cancer. These concepts may be applicable to many patients with metastatic cancer.


Assuntos
Neoplasias Colorretais/genética , Amplificação de Genes , Neoplasias Hepáticas/genética , Mutação , Adulto , Idoso , Idoso de 80 Anos ou mais , Classe II de Fosfatidilinositol 3-Quinases/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/terapia , Feminino , Perfilação da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/terapia , Masculino , Pessoa de Meia-Idade , Receptor Notch1/genética , Fator A de Crescimento do Endotélio Vascular/genética
12.
J Clin Oncol ; 36(16): 1611-1618, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29437535

RESUMO

Purpose Stereotactic body radiotherapy (SBRT) may stimulate innate and adaptive immunity to augment immunotherapy response. Multisite SBRT is an emerging paradigm for treating metastatic disease. Anti-PD-1-treatment outcomes may be improved with lower disease burden. In this context, we conducted a phase I study to evaluate the safety of pembrolizumab with multisite SBRT in patients with metastatic solid tumors. Patients and Methods Patients progressing on standard treatment received SBRT to two to four metastases. Not all metastases were targeted, and metastases > 65 mL were partially irradiated. SBRT dosing varied by site and ranged from 30 to 50 Gy in three to five fractions with predefined dose de-escalation if excess dose-limiting toxicities were observed. Pembrolizumab was initiated within 7 days after completion of SBRT. Pre- and post-SBRT biopsy specimens were analyzed in a subset of patients to quantify interferon-γ-induced gene expression. Results A total of 79 patients were enrolled; three patients did not receive any treatment and three patients only received SBRT. Patients included in the analysis were treated with SBRT and at least one cycle of pembrolizumab. Most (94.5%) of patients received SBRT to two metastases. Median follow-up for toxicity was 5.5 months (interquartile range, 3.3 to 8.1 months). Six patients experienced dose-limiting toxicities with no radiation dose reductions. In the 68 patients with imaging follow-up, the overall objective response rate was 13.2%. Median overall survival was 9.6 months (95% CI, 6.5 months to undetermined) and median progression-free survival was 3.1 months (95% CI, 2.9 to 3.4 months). Expression of interferon-γ-associated genes from post-SBRT tumor biopsy specimens significantly correlated with nonirradiated tumor response. Conclusion Multisite SBRT followed by pembrolizumab was well tolerated with acceptable toxicity. Additional studies exploring the clinical benefit and predictive biomarkers of combined multisite SBRT and PD-1-directed immunotherapy are warranted.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia , Radiocirurgia/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Monoclonais Humanizados/efeitos adversos , Antineoplásicos Imunológicos/uso terapêutico , Biópsia , Terapia Combinada , Relação Dose-Resposta à Radiação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Radiocirurgia/efeitos adversos , Dosagem Radioterapêutica , Critérios de Avaliação de Resposta em Tumores Sólidos , Resultado do Tratamento
13.
Mol Cancer Ther ; 17(4): 732-739, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29467274

RESUMO

Lung cancer is the leading cause of cancer-related deaths worldwide. Approximately 85% of all lung cancers are non-small cell histology [non-small cell lung cancer (NSCLC)]. Modern treatment strategies for NSCLC target driver oncogenes and immune checkpoints. However, less than 15% of patients survive beyond 5 years. Here, we investigated the effects of SAR302503 (SAR), a selective JAK2 inhibitor, on NSCLC cell lines and tumors. We show that SAR is cytotoxic to NSCLC cells, which exhibit resistance to genotoxic therapies, such as ionizing radiation, cisplatin, and etoposide. We demonstrate that constitutive IFN-stimulated gene expression, including an IFN-related DNA damage resistance signature, predicts for sensitivity to SAR. Importantly, tumor cell-intrinsic expression of PD-L1 is IFN-inducible and abrogated by SAR. Taken together, these findings suggest potential dual roles for JAK2 inhibitors, both as a novel monotherapy in NSCLCs resistant to genotoxic therapies, and in tandem with immune checkpoint inhibition. Mol Cancer Ther; 17(4); 732-9. ©2018 AACR.


Assuntos
Antígeno B7-H1/antagonistas & inibidores , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Janus Quinase 2/antagonistas & inibidores , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Pirrolidinas/farmacologia , Sulfonamidas/farmacologia , Animais , Apoptose , Antígeno B7-H1/metabolismo , Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Proliferação de Células , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Transdução de Sinais , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Mol Ther ; 25(7): 1588-1595, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28457664

RESUMO

Multiple therapeutic agents are typically used in concert to effectively control metastatic tumors. Recently, we described microRNAs that are associated with the oligometastatic state, in which a limited number of metastatic tumors progress to more favorable outcomes. Here, we report the effective delivery of an oligometastatic microRNA (miR-655-3p) to colorectal liver metastases using nanoscale coordination polymers (NCPs). The NCPs demonstrated a targeted and prolonged distribution of microRNAs to metastatic liver tumors. Tumor-targeted microRNA miR-655-3p suppressed tumor growth when co-delivered with oxaliplatin, suggesting additive or synergistic interactions between microRNAs and platinum drugs. This is the first known example of systemically administered nanoparticles delivering an oligometastatic microRNA to advanced metastatic liver tumors and demonstrating tumor-suppressive effects. Our results suggest a potential therapeutic strategy for metastatic liver disease by the co-delivery of microRNAs and conventional cytotoxic agents using tumor-specific NCPs.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Colorretais/terapia , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/terapia , MicroRNAs/genética , Nanoestruturas/administração & dosagem , Compostos Organoplatínicos/farmacologia , Animais , Antineoplásicos/química , Colesterol/química , Colesterol/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Di-Hidroxifenilalanina/química , Di-Hidroxifenilalanina/metabolismo , Modelos Animais de Doenças , Portadores de Fármacos , Sinergismo Farmacológico , Feminino , Células HCT116 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/secundário , Camundongos , Camundongos Nus , MicroRNAs/administração & dosagem , MicroRNAs/metabolismo , Nanoestruturas/química , Compostos Organoplatínicos/química , Oxaliplatina , Polietilenoglicóis/química , Polietilenoglicóis/metabolismo , Análise de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Cell Rep ; 18(10): 2373-2386, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28273453

RESUMO

Stimulation of CD95/Fas drives and maintains cancer stem cells (CSCs). We now report that this involves activation of signal transducer and activator of transcription 1 (STAT1) and induction of STAT1-regulated genes and that this process is inhibited by active caspases. STAT1 is enriched in CSCs in cancer cell lines, patient-derived human breast cancer, and CD95high-expressing glioblastoma neurospheres. CD95 stimulation of cancer cells induced secretion of type I interferons (IFNs) that bind to type I IFN receptors, resulting in activation of Janus-activated kinases, activation of STAT1, and induction of a number of STAT1-regulated genes that are part of a gene signature recently linked to therapy resistance in five primary human cancers. Consequently, we identified type I IFNs as drivers of cancer stemness. Knockdown or knockout of STAT1 resulted in a strongly reduced ability of CD95L or type I IFN to increase cancer stemness. This identifies STAT1 as a key regulator of the CSC-inducing activity of CD95.


Assuntos
Interferon Tipo I/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fator de Transcrição STAT1/metabolismo , Receptor fas/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Caspase 3/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Marcação por Isótopo , Fosforilação , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Regulação para Cima
16.
J Vis Exp ; (117)2016 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-27929457

RESUMO

Patients with a limited number of hepatic metastases and slow rates of progression can be successfully treated with local treatment approaches1,2. However, little is known about the heterogeneity of liver metastases, and animal models capable of evaluating the development of individual metastatic colonies are needed. Here, we present an advanced model of hepatic metastases that provides the ability to quantitatively visualize the development of individual tumor clones in the liver and estimate their growth kinetics and colonization efficiency. We generated a panel of monoclonal derivatives of HCT116 human colorectal cancer cells stably labeled with luciferase and tdTomato and possessing different growth properties. With a splenic injection followed by a splenectomy, the majority of these clones are able to generate hepatic metastases, but with different frequencies of colonization and varying growth rates. Using the In Vivo Imaging System (IVIS), it is possible to visualize and quantify metastasis development with in vivo luminescent and ex vivo fluorescent imaging. In addition, Diffuse Luminescent Imaging Tomography (DLIT) provides a 3D distribution of liver metastases in vivo. Ex vivo fluorescent imaging of harvested livers provides quantitative measurements of individual hepatic metastatic colonies, allowing for the evaluation of the frequency of liver colonization and the growth kinetics of metastases. Since the model is similar to clinically observed liver metastases, it can serve as a modality for detecting genes associated with liver metastasis and for testing potential ablative or adjuvant treatments for liver metastatic disease.


Assuntos
Neoplasias Colorretais , Modelos Animais de Doenças , Neoplasias Hepáticas , Metástase Neoplásica , Animais , Células HCT116 , Humanos , Imageamento Tridimensional , Transplante de Neoplasias
17.
Cancer ; 122(14): 2242-50, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27206146

RESUMO

BACKGROUND: The selection of patients for oligometastasis-directed ablative therapy remains a challenge. The authors report on clinical and molecular predictors of survival from a stereotactic body radiotherapy (SBRT) dose-escalation trial for oligometastases. METHODS: Patients who had from 1 to 5 metastases, a life expectancy of >3 months, and a Karnofsky performance status of >60 received escalating SBRT doses to all known cancer sites. Time to progression, progression-free survival, and overall survival (OS) were calculated at the completion of SBRT, and clinical predictors of OS were modeled. Primary tumor microRNA expression was analyzed to identify molecular predictors of OS. RESULTS: Sixty-one evaluable patients were enrolled from 2004 to 2009. The median follow-up was 2.3 years for all patients (range, 0.2-9.3 years) and 6.8 years for survivors (range, 2.0-9.3 years). The median, 2-year, and 5-year estimated OS were 2.4 years, 57%, and 32%, respectively. The rate of progression after SBRT was associated with an increased risk of death (hazard ratio [HR], 1.44; 95% confidence interval [CI], 1.24-1.82). The time from initial cancer diagnosis to metastasis (HR, 0.98; 95% CI, 0.98-0.99), the time from metastasis to SBRT (HR, 0.98; 95% CI, 0.98-0.99), and breast cancer histology (HR, 0.12; 95% CI, 0.07-0.37) were significant predictors of OS. In an exploratory analysis, a candidate classifier using expression levels of 3 microRNAs (miR-23b, miR-449a, and miR-449b) predicted survival among 17 patients who had primary tumor microRNA expression data available. CONCLUSIONS: A subset of oligometastatic patients achieves long-term survival after metastasis-directed SBRT. Clinical features and primary tumor microRNA expression profiling, if validated in an independent dataset, may help select oligometastatic patients most likely to benefit from metastasis-directed therapy. Cancer 2016;122:2242-50. © 2016 American Cancer Society.


Assuntos
Biomarcadores Tumorais , Neoplasias/diagnóstico , Neoplasias/mortalidade , Criança , Pré-Escolar , Seguimentos , Perfilação da Expressão Gênica , Humanos , Lactente , Estimativa de Kaplan-Meier , MicroRNAs/genética , Metástase Neoplásica , Neoplasias/radioterapia , Prognóstico , Modelos de Riscos Proporcionais , Radiocirurgia/efeitos adversos , Radiocirurgia/métodos , Resultado do Tratamento
18.
Oncotarget ; 7(18): 26496-515, 2016 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-27034163

RESUMO

Emerging evidence indicates that ionizing radiation (IR) and chemotherapy activate Type I interferon (IFN) signaling in tumor and host cells. However, the mechanism of induction is poorly understood. We identified a novel radioprotective role for the DEXH box RNA helicase LGP2 (DHX58) through its suppression of IR-induced cytotoxic IFN-beta [1]. LGP2 inhibits activation of the RIG-I-like receptor (RLR) pathway upon binding of viral RNA to the cytoplasmic sensors RIG-I (DDX58) and MDA5 (IFIH1) and subsequent IFN signaling via the mitochondrial adaptor protein MAVS (IPS1). Here we show that MAVS is necessary for IFN-beta induction and interferon-stimulated gene expression in the response to IR. Suppression of MAVS conferred radioresistance in normal and cancer cells. Germline deletion of RIG-I, but not MDA5, protected mice from death following total body irradiation, while deletion of LGP2 accelerated the death of irradiated animals. In human tumors depletion of RIG-I conferred resistance to IR and different classes of chemotherapy drugs. Mechanistically, IR stimulated the binding of cytoplasmic RIG-I with small endogenous non-coding RNAs (sncRNAs), which triggered IFN-beta activity. We demonstrate that the small nuclear RNAs U1 and U2 translocate to the cytoplasm after IR treatment, thus stimulating the formation of RIG-I: RNA complexes and initiating downstream signaling events. Taken together, these findings suggest that the physiologic responses to radio-/chemo-therapy converge on an antiviral program in recruitment of the RLR pathway by a sncRNA-dependent activation of RIG-I which commences cytotoxic IFN signaling. Importantly, activation of interferon genes by radiation or chemotherapy is associated with a favorable outcome in patients undergoing treatment for cancer. To our knowledge, this is the first demonstration of a cell-intrinsic response to clinically relevant genotoxic treatments mediated by an RNA-dependent mechanism.


Assuntos
Proteína DEAD-box 58/efeitos dos fármacos , Proteína DEAD-box 58/metabolismo , Proteína DEAD-box 58/efeitos da radiação , Interferon beta/biossíntese , Neoplasias/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/terapia , Pequeno RNA não Traduzido/efeitos dos fármacos , Pequeno RNA não Traduzido/metabolismo , Pequeno RNA não Traduzido/efeitos da radiação , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação
19.
PLoS One ; 10(7): e0130264, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26132411

RESUMO

Intimal hyperplasia (IH) is the primary cause of vein bypass graft failure. The smooth muscle cell (SMC) is a key element of IH as it phenotypically switches from a contractile to a synthetic state which can become pathological. R7020, which is an engineered strain of Herpes Simplex Virus-1, inhibits IH in animal models. Although it has many characteristics which make it a strong candidate for use as a prophylactic agent how it inhibits IH is not well understood. The objective of this study was to identify modes of action used by R7020 to function in blood vessels that may also contribute to its inhibition of IH. The cytopathic effect of R7020 on SMCs was determined in vitro and in a rabbit IH model. In vitro assays with R7020 infected SMCs were used to quantify the effect of dose on the release kinetics of the virus as well as the effects of R7020 on cell viability and the adhesion of peripheral blood mononuclear cells (PBMCs) to SMCs in the absence and presence of tumor necrosis factor alpha (TNF-α). The observed cytopathic effect, which included R7020 positive filopodia that extend from cell to cell and the formation of syncytia, suggests that R7020 remains cell associated after egress and spreads cell to cell instead of by diffusion through the extracellular fluid. This would allow the virus to rapidly infect vascular cells while evading the immune system. The directionality of the filopodia in vivo suggests that the virus preferentially travels from the media towards the intima targeting SMCs that would lead to IH. The formation of syncytia would inhibit SMC proliferation as incorporated cells are not able to multiply. It was also observed that R7020 induced the fusion of PBMCs with syncytia suggesting the virus may limit the effect of macrophages on IH. Furthermore, R7020 inhibited the proliferative effect of TNF-α, an inflammatory cytokine associated with increased IH. Thus, the results of this study suggest that R7020 inhibits IH through multiple mechanisms.


Assuntos
Proliferação de Células , Herpesvirus Humano 1/fisiologia , Músculo Liso Vascular/virologia , Miócitos de Músculo Liso/virologia , Túnica Íntima/virologia , Animais , Movimento Celular , Células Cultivadas , Herpesvirus Humano 1/patogenicidade , Humanos , Hiperplasia/virologia , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Miócitos de Músculo Liso/fisiologia , Coelhos , Túnica Íntima/patologia
20.
Sci Rep ; 5: 10946, 2015 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-26094901

RESUMO

We present a model of hepatic colorectal metastases which represents monoclonal cell lines double-labeled by luciferase and tdTomato. These cells form liver metastasis in varying numbers and patterns similar to those observed in patients. Using in vivo and ex vivo luminescent and fluorescent imaging we determine the growth kinetics and clonogenic frequency of tumor cells colonizing liver. Molecular profiling detected stable expressional differences between clones consistent with their phenotypes. The data indicate that clinically relevant phenotypes of liver metastases can be modeled in vivo.


Assuntos
Neoplasias Colorretais/patologia , Diagnóstico por Imagem/métodos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/secundário , Animais , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Xenoenxertos , Humanos , Medições Luminescentes/métodos , Carga Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...