Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lab Chip ; 15(4): 1092-100, 2015 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-25524620

RESUMO

Switchability is a highly sought after feature for planar optical systems. Suspensions of nanomaterials can be used for generating controllable changes in such systems. We report a planar diffractive microfluidic lens which integrates controlled dielectrophoresis (DEP) for trapping suspended nanomaterials. Silicon and tungsten oxide nanoparticle suspensions are used. These nanomaterials are trapped in such a way as to form alternating opaque and transparent rings using the DEP forces on demand. These rings form a planar diffractive Fresnel zone plate to focus the incident light. The Fresnel zone plate is tuned for the visible light region and the lens can be turned on (DEP applied) or off (DEP removed) in a controlled manner. This proof of concept demonstration can be further expanded for a variety of switchable optical devices and can be integrated with lab-on-a-chip and optofluidic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...