Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 10(8)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37627823

RESUMO

This work demonstrated the feasibility of an industrial-scale aerated static pile composting system for treating one of the common biowastes-soybean curd residue. The mixing ratios of the feedstock were optimized to achieve a carbon-nitrogen ratio and a moisture level in the ranges of 25-35 and 60-70%, respectively. This open-air composting system required 6-7 months to obtain a mature compost. Solvita and seed germination tests further confirmed the maturity of the compost, with 25% compost extract concentration yielding the best germination index in the absence of phytotoxicity. The bacterial and fungal compositions of the compost piles were further examined with metagenomic analysis. Thermoactinomyces spp., Oceanobacillus spp., and Kroppenstedtia spp. were among the unique bacteria found, and Diutina rugosa, Thermomyces dupontii, and Candida taylorii were among the unique fungi found in the compost piles, suggesting the presence of good microorganisms for degrading the organic biowastes.

2.
RSC Adv ; 10(37): 21760-21771, 2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35516635

RESUMO

By means of molecular dynamics (MD) simulations, we explored the structural properties of polyethylene glycol monolaurate (PEGML) in water and in various aliphatic alcohols (methanol, ethanol, 2-propanol, 2-butanol, tert-butanol, and 1-pentanol). The PEGML and the alcohols were simulated using the optimized potentials for liquid simulations, all-atom (OPLS-AA) force field and water using the extended simple point charge (SPC/E) model. From the isothermal-isobaric (NPT, constant number of particles, constant pressure, and constant temperature) ensemble, we extracted the densities from the simulations and compared them with those from experimental results in order to confirm the validity of the selected force fields. The densities from MD simulations are in good agreement with the experimental values. To gain more insight into the nature of interactions between the PEGML and the solvent molecules, we analyzed the hydrogen-bonds, the electrostatic (Coulomb) interactions, and the van der Waals (Lennard-Jones) interaction energies extracted from MD simulations. The results were further strengthened by computing the solvation free energy by employing the free energy perturbation (FEP) approach. In this method, the free energy difference was computed by using the Bennet Acceptance Ratio (BAR) method. Moreover, the radial distribution functions were analyzed in order to gain more understanding of the solution behavior at the molecular level.

3.
J Phys Chem B ; 117(2): 563-82, 2013 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-23249384

RESUMO

Here, for the first time, we show that with addition of a biological buffer, 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES), into aqueous solutions of tetrahydrofuran (THF), 1,3-dioxolane, 1,4-dioxane, 1-propanol, 2-propanol, tert-butanol, acetonitrile, or acetone, the organic solvent can be excluded from water to form a new liquid phase. The phase diagrams have been determined at ambient temperature. In order to understand why and how a zwitterion solute (HEPES) induced phase separation of the investigated systems, molecular dynamics (MD) simulation studies are performed for HEPES + water + THF system. The MD simulations were conducted for the aqueous mixtures with 12 different compositions. The reliability of the simulation results of HEPES in pure water and beyond the phase separation mixtures was justified by comparing the densities obtained from MD with the experimental values. The simulation results of HEPES in pure THF and in a composition inside the phase separation region were justified qualitatively. Interestingly, all HEPES molecules entirely aggregated in pure THF. This reveals that HEPES is insoluble in pure THF, which is consistent with the experimental results. Even more interestingly, the MD simulation for the mixture with composition inside the phase separation region showed the formation of two phases. The THF molecules are squeezed out from the water network into a new liquid phase. The hydrogen bonds (HBs), HB lifetime, HB Gibbs energy (ΔG), radial distribution functions (RDFs), coordination numbers (CNs), electrostatic interactions, and the van der Waals interactions between the different species have been analyzed. Further, MD simulations for the other phase separation systems by choosing a composition inside the two liquids region for each system were also simulated. Our findings will therefore pave the way for designing new benign separation auxiliary agents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...