Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(13): 14704-14727, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38585051

RESUMO

The growing demand for clean energy has spurred the quest for sustainable alternatives to fossil fuels. Hydrogen has emerged as a promising candidate with its exceptional heating value and zero emissions upon combustion. However, conventional hydrogen production methods contribute to CO2 emissions, necessitating environmentally friendly alternatives. With its vast potential, seawater has garnered attention as a valuable resource for hydrogen production, especially in arid coastal regions with surplus renewable energy. Direct seawater electrolysis presents a viable option, although it faces challenges such as corrosion, competing reactions, and the presence of various impurities. To enhance the seawater electrolysis efficiency and overcome these challenges, researchers have turned to bipolar membranes (BPMs). These membranes create two distinct pH environments and selectively facilitate water dissociation by allowing the passage of protons and hydroxide ions, while acting as a barrier to cations and anions. Moreover, the presence of catalysts at the BPM junction or interface can further accelerate water dissociation. Alongside the thermodynamic potential, the efficiency of the system is significantly influenced by the water dissociation potential of BPMs. By exploiting these unique properties, BPMs offer a promising solution to improve the overall efficiency of seawater electrolysis processes. This paper reviews BPM electrolysis, including the water dissociation mechanism, recent advancements in BPM synthesis, and the challenges encountered in seawater electrolysis. Furthermore, it explores promising strategies to optimize the water dissociation reaction in BPMs, paving the way for sustainable hydrogen production from seawater.

2.
ACS Omega ; 9(11): 12457-12477, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38524459

RESUMO

Access to clean water remains challenging for people living in underdeveloped regions, rural areas, and remote locations. In the absence of centralized water treatment systems, point-of-use (POU) solutions are necessary. Ceramic water filters (CWFs) have emerged as a practical and affordable option for decentralized water treatment. This review focuses on recent advances in antibacterial CWFs, including preparation methods, filtration performance, and applications. The review highlights the significance of preparation techniques, material choices, and additives in determining CWF properties and performance. Despite virus and chemical contaminant removal limitations, ongoing research on nanofillers and antibacterial additives shows promise for enhancing the CWF performance. The cost-effectiveness, ease of production, and low operational requirements of CWF make it a viable solution for decentralized drinking water systems, particularly in resource-limited areas. Studies have demonstrated the efficacy of CWFs in reducing water contaminants, but proper maintenance and user training are crucial to optimal performance.

3.
Appl Microbiol Biotechnol ; 107(12): 4079-4091, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37178308

RESUMO

In this work, an embedded ends-free membrane bioreactor (EEF-MBR) has been developed to overcome the fouling problem. The EEF-MBR unit has a novel configuration where a bed of granular activated carbon is placed in the bioreactor tank and fluidized by the aeration system. The performance of pilot-scale EEF-MBR was assessed based on flux and selectivity over 140 h. The permeate flux fluctuated between 2 and 10 L.m-2.h-1 under operating pressure of 0.07-0.2 bar when EEF-MBR was used to treat wastewater containing high organic matter. The COD removal efficiency was more than 99% after 1 h of operating time. Results from the pilot-scale performance were then used to design a large-scale EEF-MBR with 1200 m3.day-1 capacity. Economic analysis showed that this new MBR configuration was cost-effective when the permeate flux was set at 10 L.m-2.h-1. The estimated additional cost for the large-scale wastewater treatment was about 0.25 US$.m-3 with a payback period of 3 years. KEY POINTS: • Performance of new MBR configuration, EEF-MBR, was assessed in long term operation. • EEF-MBR shows high COD removal and relatively stable flux. • Cost estimation of large scale shows the cost effective EEF-MBR application.


Assuntos
Membranas Artificiais , Purificação da Água , Análise Custo-Benefício , Águas Residuárias , Purificação da Água/métodos , Reatores Biológicos , Eliminação de Resíduos Líquidos/métodos
4.
ACS Omega ; 7(27): 23009-23026, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35847319

RESUMO

A molecularly imprinted affinity membrane (MIAM) can perform separation with high selectivity due to its unique molecular recognition introduced from the molecular-printing technique. In this way, a MIAM is able to separate a specific or targeted molecule from a mixture. In addition, it is possible to achieve high selectivity while maintaining membrane permeability. Various methods have been developed to produce a MIAM with high selectivity and productivity, with their respective advantages and disadvantages. In this paper, the MIAM is reviewed comprehensively, from the fundamentals of the affinity membrane to its applications. First, the development of a MIAM and various preparation methods are presented. Then, applications of MIAMs in sensor, metal ion separation, and organic compound separation are discussed. The last part of the review discusses the outlook of MIAMs for future development.

5.
Chem Rev ; 122(16): 13547-13635, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35904408

RESUMO

Agricultural development, extensive industrialization, and rapid growth of the global population have inadvertently been accompanied by environmental pollution. Water pollution is exacerbated by the decreasing ability of traditional treatment methods to comply with tightening environmental standards. This review provides a comprehensive description of the principles and applications of electrochemical methods for water purification, ion separations, and energy conversion. Electrochemical methods have attractive features such as compact size, chemical selectivity, broad applicability, and reduced generation of secondary waste. Perhaps the greatest advantage of electrochemical methods, however, is that they remove contaminants directly from the water, while other technologies extract the water from the contaminants, which enables efficient removal of trace pollutants. The review begins with an overview of conventional electrochemical methods, which drive chemical or physical transformations via Faradaic reactions at electrodes, and proceeds to a detailed examination of the two primary mechanisms by which contaminants are separated in nondestructive electrochemical processes, namely electrokinetics and electrosorption. In these sections, special attention is given to emerging methods, such as shock electrodialysis and Faradaic electrosorption. Given the importance of generating clean, renewable energy, which may sometimes be combined with water purification, the review also discusses inverse methods of electrochemical energy conversion based on reverse electrosorption, electrowetting, and electrokinetic phenomena. The review concludes with a discussion of technology comparisons, remaining challenges, and potential innovations for the field such as process intensification and technoeconomic optimization.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Eletrodos , Poluição Ambiental , Águas Residuárias , Água , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...