Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry (Mosc) ; 86(10): 1352-1367, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34903158

RESUMO

The review discusses the role of metabolic disorders (in particular, insulin resistance) in the development of age-related diseases and normal aging with special emphasis on the changes in postmitotic cells of higher organisms. Caloric restriction helps to prevent such metabolic disorders, which could probably explain its ability to prolong the lifespan of laboratory animals. Maintaining metabolic homeostasis is especially important for the highly differentiated long-lived body cells, whose lifespan is comparable to the lifespan of the organism itself. Normal functioning of these cells can be ensured only upon correct functioning of the cytoplasm clean-up system and availability of all required nutrients and energy sources. One of the central problems in gerontology is the age-related disruption of glucose metabolism leading to obesity, diabetes, metabolic syndrome, and other related pathologies. Along with the adipose tissue, skeletal muscles are the main consumers of insulin; hence the physical activity of muscles, which supports their energy metabolism, delays the onset of insulin resistance. Insulin resistance disrupts the metabolism of cardiomyocytes, so that they fail to utilize the nutrients to perform their functions even being surrounded by a nutrient-rich environment, which contributes to the development of age-related cardiovascular diseases. Metabolic pathologies also alter the nutrient sensitivity of neurons, thus disrupting the action of insulin in the central nervous system. In addition, there is evidence that neurons can develop insulin resistance as well. It has been suggested that affecting nutritional sensors (e.g., AMPK) in postmitotic cells might improve the state of the entire multicellular organism, slow down its aging, and increase the lifespan.


Assuntos
Envelhecimento/metabolismo , Restrição Calórica/métodos , Doenças Metabólicas/prevenção & controle , Nutrientes/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Metabolismo Energético , Homeostase , Humanos , Longevidade , Doenças Metabólicas/patologia , Mitose
2.
Artigo em Inglês | MEDLINE | ID: mdl-31007971

RESUMO

In recent years a number of studies have reported the significant relationship between metabolic syndrome and neurodegenerative disease. There is accumulating evidence that the interplay of combined genetic and environmental risk factors (from diet to life style to pollutants) to intrinsic age-related oxi-inflammatory changes may be advocated for to explain the pandemic of neurodegenerative diseases. In recent years a specific Fermented Papaya Preparation (FPP) has been shown to significantly affect a number of redox signalling abnormalities in a variety of chronic diseases and as well in aging mechanisms either on experimental and on clinical ground. The aim of the present study was to evaluate FPP use in impending metabolic disease patients with potentially neurodegenerative disease clustered risk factors. The study population consisted of 90 patients aged 45-65 years old, with impending metabolic syndrome and previously selected as to be ApoE4 genotype negative. By applying a RCT, double-blind method, one group received FPP 4.5 g twice a day (the most common dosage utilized in prior clinical studies) while the other received an oral antioxidant cocktail (trans-resveratrol, selenium, vitamin E, vitamin C). Then, after 21 month treatment period, a selected heavy metal chelator was added at the dosage of 3 g/nocte for the final 3 months study treatment. The parameters tested were: routine tests oxidized LDL-cholesterol, anti-oxidised LDL, Cyclophilin-A (CyPA), plasminogen activator inhibitor-1 and CyPA gene expression. From this study it would appear that FPP, unlike the control antioxidant, significantly decreased oxidized-LDL and near normalizing the anti-Ox-LDL/Ox-LDL ratio (p<0.001) although unaffecting the lipid profile per sè. Moreover, only FPP decreased cyclophilin-A plasma level and plasminogen activator-inhibitor (p<0.01) together with downregulating cyclophilin-A gene expression (p<0.01). Insulin resistance was only mildly improved. Heavy metals gut clearance proved to be effectively enhanced by the chelator (p<0.01) and this was not affected by any of the nutraceuticals, nor it added any further benefit to the biological action of FPP.

3.
Curr Aging Sci ; 6(1): 14-20, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23387885

RESUMO

According to our conception, the aging process is caused by cell proliferation restriction-induced accumulation of various macromolecular defects (mainly DNA damage) in cells of a mature organism or in a cell population. In the case of cell cultures, the proliferation restriction is related to so-called contact inhibition and to the Hayflick's limit, while in the case of multicellular organisms, it is related to the appearance, in the process of differentiation, of organs and tissues consisting of postmitotic and very slowly dividing cells. It is assumed that the proliferation of intact cells prevents accumulation of various errors in a cell population. However, the continuous propagation of all the cells in a multicellular organism is absolutely incompatible with its normal functioning. Thus, the program of development, when it generates postmitotic or slowly dividing cells, automatically leads also to the onset of the aging process (mortality increase with age). Therefore, any additional special program for aging simply becomes unnecessary. This, however, doesn't reject, for some organisms, the reasonability of programmed death, which makes possible the elimination of harmful, from the species point of view, individuals. It is also very important to emphasize that increase or decrease of an organism's lifespan under the effects of various external factors is not always necessarily related to modification of the aging process, though the experimental results in the field are usually interpreted in just this way. I called the experimental-gerontological models similar to the Hayflick's model "correlative", since they are based on some correlations only and not related necessarily to the gist of the aging phenomenon. So, for the Hayflick's model, it is the relationship between population doubling level and donor age, between population doubling potential and species lifespan, between some cell changes in vivo and in vitro, and so forth. If the rationale of the "Hayflick phenomenon" is used, we can't explain why we age. Nevertheless, many authors virtually put a sign of equality between aging in vitro and aging in vivo, which generates conclusions that are of quite doubtful accuracy. A classic illustration of this is the telomere concept of aging. Originally, the principle of shortening end-segments of DNA (telomeres) during each cell division was formulated at the beginning of seventies by the Russian scientist Aleksey Olovnikov and used by him to explain the limited "proliferative" lifespan in vitro of normal cells. Subsequently, the existence of this phenomenon was confirmed by the results of many research reports, the culmination of which was a publication in which the authors demonstrated the possibility of increasing the proliferative potential of normal cells by introducing the enzyme telomerase to them, thus restoring the lost telomere segments. At the moment it looks like the telomere shortening contributes to aging in vitro only, but not to aging in vivo because an organism never realizes the full proliferative potential of its cells. Besides, the most "responsive to aging" are the organs and tissues consisting of postmitotic cells, for which the concept of proliferative potential loses any meaning in practical terms. We developed another "correlative" model--a model for testing of geroprotectors and geropromoters--the "cell kinetics model." It is based on the well-known correlation between the "age" of cultured cells (age of their donor) and their saturation density. The model allowed us to perform preliminary testing of a lot of different compounds and factors that are interesting from a gerontological point of view, but it revealed no information about the real mechanisms of aging. However, the second model we use in our studies--the "stationary phase aging" model--obviously, is a "gist" model. It is based on the assumption that in the cells of stationary cultures various intracellular changes similar to those of an aging organism can be observed. The proliferation restriction in the case is provided, as a rule, just by contact inhibition. Many experimental results confirming this assumption were obtained. "Age-related" changes that are well known from organismal studies were shown to really occur in our experimental stationary cell culture model. Besides, such experiments can be carried out on nearly any type of cells from various biological species. Thus, the evolutionary approach to analysis of the data is provided. Moreover, the changes in the stationary cell cultures become detectable very soon--as a rule, in 2 to 3 weeks after beginning the experiment. All this allows us to suppose that the "stationary phase aging" model should provide a very effective approach to testing of different substances and their cocktails on their activities in terms of accelerating or retarding aging--of course, if their effect is realized on the cell level only.


Assuntos
Envelhecimento/fisiologia , Senescência Celular/fisiologia , Envelhecimento/genética , Animais , Técnicas de Cultura de Células , Proliferação de Células , Senescência Celular/genética , Dano ao DNA , Humanos , Longevidade/fisiologia , Modelos Biológicos , Encurtamento do Telômero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...