Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(19)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37836297

RESUMO

In this study, we considered the structural stability, electronic properties, and phonon dispersion of the cubic (c-ZrO2), tetragonal (t-ZrO2), and monoclinic (m-ZrO2) phases of ZrO2. We found that the monoclinic phase of zirconium dioxide is the most stable among the three phases in terms of total energy, lowest enthalpy, highest entropy, and other thermodynamic properties. The smallest negative modes were found for m-ZrO2. Our analysis of the electronic properties showed that during the m-t phase transformation of ZrO2, the Fermi level first shifts by 0.125 eV toward higher energies, and then decreases by 0.08 eV in the t-c cross-section. The band gaps for c-ZrO2, t-ZrO2, and m-ZrO2 are 5.140 eV, 5.898 eV, and 5.288 eV, respectively. Calculations based on the analysis of the influence of doping 3.23, 6.67, 10.35, and 16.15 mol. %Y2O3 onto the m-ZrO2 structure showed that the enthalpy of m-YSZ decreases linearly, which accompanies the further stabilization of monoclinic ZrO2 and an increase in its defectiveness. A doping-induced and concentration-dependent phase transition in ZrO2 under the influence of Y2O3 was discovered, due to which the position of the Fermi level changes and the energy gap decreases. It has been established that the main contribution to the formation of the conduction band is made by the p-states of electrons, not only for pure systems, but also those doped with Y2O3. The t-ZrO2 (101) and t-YSZ (101) surface models were selected as optimal surfaces for water adsorption based on a comparison of their surface energies. An analysis of the mechanism of water adsorption on the surface of t-ZrO2 (101) and t-YSZ (101) showed that H2O on unstabilized t-ZrO2 (101) is adsorbed dissociatively with an energy of -1.22 eV, as well as by the method of molecular chemisorption with an energy of -0.69 eV and the formation of a hydrogen bond with a bond length of 1.01 Å. In the case of t-YSZ (101), water is molecularly adsorbed onto the surface with an energy of -1.84 eV. Dissociative adsorption of water occurs at an energy of -1.23 eV, near the yttrium atom. The results show that ab initio approaches are able to describe the mechanism of doping-induced phase transitions in (ZrO2+Y2O3)-like systems, based on which it can be assumed that DFT calculations can also flawlessly evaluate other physical and chemical properties of YSZ, which have not yet been studied quantum chemical research. The obtained results complement the database of research works carried out in the field of the application of biocompatible zirconium dioxide crystals and ceramics in green energy generation, and can be used in designing humidity-to-electricity converters and in creating solid oxide fuel cells based on ZrO2.

2.
Langmuir ; 37(1): 278-288, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33356308

RESUMO

Interactions of the divalent cations Ca2+ and Mg2+ with the zwitterionic lipid bilayers prepared of a fully saturated dipalmitoylphosphatidylcholine (DPPC) or a di-monounsaturated dioleoylphosphatidylcholine (DOPC) were studied by using the neutron scattering methods and molecular dynamics simulations. The effect on the bilayer structural properties confirms the direct interactions in all cases studied. The changes are observed in the bilayer thickness and lateral area. The extent of these structural changes, moreover, suggests various mechanisms of the cation-lipid interactions. First, we have observed a small difference when studying DPPC bilayers in the gel and fluid phases, with somewhat larger effects in the former case. Second, the hydration proved to be a factor in the case of DOPC bilayers, with the larger effects in the case of less hydrated systems. Most importantly, however, there was a qualitative difference between the results of the fully hydrated DOPC bilayers and the others examined. These observations then prompt us to suggest an interaction model that is plausibly governed by the lateral area of lipid, though affected indirectly also by the hydration level. Namely, when the interlipid distance is small enough to allow for the multiple lipid-ion interactions, the lipid-ion-lipid bridges are formed. The bridges impose strong attractions that increase the order of lipid hydrocarbon chains, resulting in the bilayer thickening. In the other case, when the interlipid distance extends beyond a limiting length corresponding to the area per lipid of ∼65 Å2, Mg2+ and Ca2+ continue to interact with the lipid groups by forming the separate ion-lipid pairs. As the interactions proposed affect the lipid membrane structure in the lateral direction, they may prove to play their role in other mechanisms lying within the membrane multicomponent systems and regulating for example the lipid-peptide-ion interactions.

3.
Langmuir ; 33(12): 3134-3141, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28277666

RESUMO

Interactions of calcium (Ca2+) and zinc (Zn2+) cations with biomimetic membranes made of dipalmitoylphosphatidylcholine (DPPC) were studied by small angle neutron diffraction (SAND). Experiments show that the structure of these lipid bilayers is differentially affected by the two divalent cations. Initially, both Ca2+ and Zn2+ cause DPPC bilayers to thicken, while further increases in Ca2+ concentration result in the bilayer thinning, eventually reverting to having the same thickness as pure DPPC. The binding of Zn2+, on the other hand, causes the bilayers to swell to a maximum thickness, and the addition of more Zn2+ does not result in a further thickening of the membrane. Agreement between our results obtained using oriented planar membranes and those from vesicular samples implies that the effect of cations on bilayer thickness is the result of electrostatic interactions, rather than geometrical constraints due to bilayer curvature. This notion is further reinforced by MD simulations. Finally, the radial distribution functions reveal a strong interaction between Ca2+ and the phosphate oxygens, while Zn2+ shows a much weaker binding specificity.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Cálcio/química , Bicamadas Lipídicas/química , Zinco/química , Materiais Biomiméticos/química , Simulação de Dinâmica Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...