Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry (Mosc) ; 89(6): 1079-1093, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38981702

RESUMO

The work presents results of the in vitro and in silico study of formation of amyloid-like structures under harsh denaturing conditions by non-specific OmpF porin of Yersinia pseudotuberculosis (YpOmpF), a membrane protein with ß-barrel conformation. It has been shown that in order to obtain amyloid-like porin aggregates, preliminary destabilization of its structure in a buffer solution with acidic pH at elevated temperature followed by long-term incubation at room temperature is necessary. After heating at 95°C in a solution with pH 4.5, significant conformational rearrangements are observed in the porin molecule at the level of tertiary and secondary structure of the protein, which are accompanied by the increase in the content of total ß-structure and sharp decrease in the value of characteristic viscosity of the protein solution. Subsequent long-term exposure of the resulting unstable intermediate YpOmpF at room temperature leads to formation of porin aggregates of various shapes and sizes that bind thioflavin T, a specific fluorescent dye for the detection of amyloid-like protein structures. Compared to the initial protein, early intermediates of the amyloidogenic porin pathway, oligomers, have been shown to have increased toxicity to the Neuro-2aCCL-131™ mouse neuroblastoma cells. The results of computer modeling and analysis of the changes in intrinsic fluorescence during protein aggregation suggest that during formation of amyloid-like aggregates, changes in the structure of YpOmpF affect not only the areas with an internally disordered structure corresponding to the external loops of the porin, but also main framework of the molecule, which has a rigid spatial structure inherent to ß-barrel.


Assuntos
Porinas , Yersinia pseudotuberculosis , Porinas/química , Porinas/metabolismo , Yersinia pseudotuberculosis/metabolismo , Yersinia pseudotuberculosis/química , Animais , Camundongos , Amiloide/metabolismo , Amiloide/química , Estrutura Secundária de Proteína , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Conformação Proteica
2.
Biochim Biophys Acta Biomembr ; 1864(9): 183971, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35643329

RESUMO

The recombinant OmpF porin of Yersinia pseudotuberculosis as a model of transmembrane protein of the ß-barrel structural family was used to study low growth temperature effect on the structure of the produced inclusion bodies (IBs). This porin showed a very low expression level in E. coli at a growth temperature below optimal 37 °C. The introduction of a N-terminal hexahistidine tag into the mature porin molecule significantly increased the biosynthesis of the protein at low cultivation temperatures. The recombinant His-tagged porin (rOmpF-His) was expressed in E. coli at 30 and 18 °C as inclusion bodies (IB-30 and IB-18). The properties and structural organization of IBs, as well as the structure of rOmpF-His solubilized from the IBs with urea and SDS, were studied using turbidimetry, electron microscopy, dynamic light scattering, optical spectroscopy, and amyloid-specific dyes. IB-18, in comparison with IB-30, has a higher solubility in denaturants, suggesting a difference between IBs in the conformation of the associated polypeptide chains. The spectroscopic analysis revealed that rOmpF-His IBs have a high content of secondary structure with a tertiary-structure elements, including a native-like conformation, the proportion of which in IB-18 is higher than in IB-30. Solubilization of the porin from IBs is accompanied by a modification of its secondary structure. The studied IBs also contain amyloid-like structures. The results obtained in this study expand our knowledge of the structural organization of IBs formed by proteins of different structural classes and also have a contribution into the new approaches development of producing functionally active recombinant membrane proteins.


Assuntos
Corpos de Inclusão , Proteínas Recombinantes , Yersinia pseudotuberculosis , Escherichia coli/genética , Escherichia coli/metabolismo , Corpos de Inclusão/metabolismo , Porinas/química , Porinas/genética , Proteínas Recombinantes/biossíntese , Temperatura , Yersinia pseudotuberculosis/metabolismo
3.
Microb Pathog ; 150: 104694, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33359075

RESUMO

Bacterium Yersinia ruckeri as a pathogen induces causative agent of intestinal fish disease called enteric redmouth disease (ERM) is known. In this study, outer membrane OmpF porin from the Y. ruckeri (YrOmpF) has been identified as a pathogenic factor which affects host macrophage activation and life cycle of eukaryotic cells. Using synthetic peptides corresponding to the sequences of the outer loops of YrOmpF L1 loop of the porin is most involved in the structure of B epitopes on the surface of the microbial cell it was found. T epitopes of the isolated YrOmpF trimer not only by linear, but also by discontinuous determinants, which is due to the secondary structure of the protein are represented. It was shown that YrOmpF was twice more cytotoxic to THP-1 cells (human monocytes, cancer cells) in comparison with CHH-1 cells (Oncorhynchus keta cardiac muscle cell, non-cancer cells). It was found YrOmpF induce cell cycle S-phase arrest in both normal CHH-1 and cancer THP-1 cells. In the cancer cells observed effect was most pronounce. In addition, we have observed an induction of apoptosis in THP-1 cell line treated with YrOmpF for 48 h at IC50 (48.6 µg/ml). Significant cytotoxic effect of YrOmpF on primary mouse peritoneal macrophages been detected as well. Of note, co-incubation of macrophages with anti-YrOmpF antibodies could decrease the amount of lactate dehydrogenase, while the number of living cells significantly increased. YrOmpF stimulates the activity of the phagocytic bactericidal systems especially of the oxygen-independent subsystem it was found. Antibodies against YrOmpF decreased MPO release and CP synthesis by peritoneal macrophages and increased their viability.


Assuntos
Doenças dos Peixes , Oncorhynchus mykiss , Yersiniose , Animais , Antígenos de Superfície , Camundongos , Porinas , Yersinia ruckeri
4.
Molecules ; 25(14)2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32650591

RESUMO

Marinomonas primoryensis KMM 3633T, extreme living marine bacterium was isolated from a sample of coastal sea ice in the Amursky Bay near Vladivostok, Russia. The goal of our investigation is to study outer membrane channels determining cell permeability. Porin from M. primoryensis KMM 3633T (MpOmp) has been isolated and characterized. Amino acid analysis and whole genome sequencing were the sources of amino acid data of porin, identified as Porin_4 according to the conservative domain searching. The amino acid composition of MpOmp distinguished by high content of acidic amino acids and low content of sulfur-containing amino acids, but there are no tryptophan residues in its molecule. The native MpOmp existed as a trimer. The reconstitution of MpOmp into black lipid membranes demonstrated its ability to form ion channels whose conductivity depends on the electrolyte concentration. The spatial structure of MpOmp had features typical for the classical gram-negative porins. However, the oligomeric structure of isolated MpOmp was distinguished by very low stability: heat-modified monomer was already observed at 30 °C. The data obtained suggest the stabilizing role of lipids in the natural membrane of marine bacteria in the formation of the oligomeric structure of porin.


Assuntos
Organismos Aquáticos/química , Proteínas de Bactérias , Marinomonas/química , Porinas , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Porinas/química , Porinas/isolamento & purificação
5.
Int J Biol Macromol ; 107(Pt B): 2484-2491, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29079441

RESUMO

This work is devoted to the ascertainment of serological cross-reactivity between OmpF porin from Yersinia pseudotuberculosis (YpOmpF) and human thyroid-stimulating hormone receptor (hTSHR). Extracts containing hTSHR were isolated from surgical thyroid tissue of patients with clinical and diagnostic signs of diffuse toxic goiter. Monoclonal antibodies to hTSHR (mAbs) were shown to interact both with antigens in thyroid tissue extracts and with YpOmpF. Models of spatial structures of trimer and monomer complexes of YpOmpF with antibodies to hTSHR were also constructed. According to the results of molecular modeling, YpOmpF, being in monomeric form, can, like hTSHR, interact freely with the mAbs. But when the porin trimer is formed the hydrophobic region that comprises in the porin-antibody interaction zone is closed. This circumstance as well as other spatial rearrangement of amino acid residues that determine the efficiency of binding prevents the interaction between YpOmpF trimer and monoclonal antibody to receptor. These in vitro and in silico results confirmed the existence of the phenomenon of molecular mimicry. Thus, an autoimmune disease of the thyroid gland (Graves' disease) that sometimes arises after suffering pseudotuberculosis may be the consequence of the structural and antigenic similarity between YpOmpF and hTSHR.


Assuntos
Simulação por Computador , Reações Cruzadas/imunologia , Porinas/imunologia , Receptores da Tireotropina/imunologia , Yersinia pseudotuberculosis/metabolismo , Sequência de Aminoácidos , Animais , Feminino , Humanos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Ligação Proteica , Estrutura Secundária de Proteína , Coelhos , Receptores da Tireotropina/isolamento & purificação , Glândula Tireoide/metabolismo , Extratos de Tecidos
6.
Mol Biosyst ; 13(9): 1854-1862, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28726924

RESUMO

Irreversible denaturation of membrane proteins in detergent solutions is similar to unfolding of water-soluble multidomain proteins and represents a complex, multistage process. Pore-forming proteins of Gram-negative bacteria are heat-modifiable proteins, i.e., proteins altering their molecular forms (trimers or monomers), and accordingly, their electrophoretic mobilities depending upon denaturation conditions. There are still some contradictory data on the peculiarities of the conformational changes in the porin structure with temperature. Some authors demonstrated the loss of the porin trimeric structure only after unfolding of monomer subunits. Other researchers initially observed the dissociation of porin oligomers into the folded monomers. Using SDS-PAGE, spectroscopic methods and differential scanning calorimetry, a detailed study of thermally induced changes in the spatial structure of OmpF porin from the fish pathogen Yersinia ruckeri (Yr-OmpF) was carried out. The data obtained allowed us to conclude unambiguously that changes in the spatial structure of the monomers of Yr-OmpF precede the dissociation of the porin trimer.


Assuntos
Porinas/química , Porinas/metabolismo , Desnaturação Proteica , Yersinia ruckeri/metabolismo , Varredura Diferencial de Calorimetria , Dicroísmo Circular , Eletroforese em Gel de Poliacrilamida , Estabilidade Proteica , Estrutura Secundária de Proteína , Desdobramento de Proteína , Termodinâmica
7.
Microbiologyopen ; 5(4): 597-603, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27038237

RESUMO

The capability of Yersinia ruckeri to survive in the aquatic systems reflects its adaptation (most importantly through the alteration of membrane permeability) to the unfavorable environments. The nonspecific porins are a key factor contributing to the permeability. Here we studied the influence of the stimuli, such as temperature, osmolarity, and oxygen availability on regulation of Y. ruckeri porins. Using qRT-PCR and SDS-PAGE methods we found that major porins are tightly controlled by temperature. Hyperosmosis did not repress OmpF production. The limitation of oxygen availability led to decreased expression of both major porins and increased transcription of the minor porin OmpY. Regulation of the porin balance in Y. ruckeri, in spite of some similarities, diverges from that system in Escherichia coli. The changes in porin regulation can be adapted in Y. ruckeri in a species-specific manner determined by its aquatic habitats.


Assuntos
Adaptação Fisiológica/fisiologia , Proteínas da Membrana Bacteriana Externa/metabolismo , Permeabilidade da Membrana Celular/fisiologia , Oxigênio/metabolismo , Porinas/metabolismo , Yersinia ruckeri/metabolismo , Anaerobiose/fisiologia , Animais , Proteínas da Membrana Bacteriana Externa/genética , Membrana Celular/fisiologia , Escherichia coli/metabolismo , Doenças dos Peixes/microbiologia , Doenças dos Peixes/patologia , Peixes/microbiologia , Regulação Bacteriana da Expressão Gênica , Concentração Osmolar , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Temperatura , Microbiologia da Água
8.
Biochim Biophys Acta ; 1858(4): 883-91, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26854962

RESUMO

To gain a mechanistic insight in the functioning of the OmpF-like porin from Yersinia pseudotuberculosis (YOmpF), we compared the effect of pH variation on the ion channel activity of the protein in planar lipid bilayers and its binding to lipid membranes. The behavior of YOmpF channels upon acidification was similar to that previously described for Escherichia coli OmpF. In particular, a decrease in pH of the bathing solution resulted in a substantial reduction of YOmpF single channel conductance, accompanied by the emergence of subconductance states. Similar subconductance substates were elicited by the addition of lysophosphatidylcholine. This observation, made with porin channels for the first time, pointed to the relevance of lipid-protein interactions, in particular, the lipid curvature stress, to the appearance of subconductance states at acidic pH. Binding of YOmpF to membranes displayed rather modest dependence on pH, whereas the channel-forming potency of the protein tremendously decreased upon acidification.


Assuntos
Canais Iônicos/química , Bicamadas Lipídicas/química , Porinas/química , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Escherichia coli , Concentração de Íons de Hidrogênio , Canais Iônicos/metabolismo , Potenciais da Membrana , Porinas/metabolismo , Yersinia pseudotuberculosis
9.
Protein Pept Lett ; 22(12): 1060-5, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26349609

RESUMO

Lysophosphatidyletnolamine (LPE) is one of enigmatic lipids of bacteria. It is generated from major membrane lipid - phosphatidylethanolamine at severe changes of the bacterial growth conditions. Accumulation of this phospholipid in cells of Gram-negative enterobacterium Yersinia pseudotuberculosis results in the enhanced thermostability of OmpF-like porin (YOmpF) from the same bacteria. The respective integral conformational rearrangements may disturb the channel permeability of protein under stress conditions. However, role of fatty acid composition of LPE in this effect remained unclear. Present work demonstrated that the level of unsaturated LPE is 3.5 times higher than saturated one in total LPE of bacterial cells exposed to stress (phenol treatment). Unsaturated 1-oleoyl-2-hydroxy-sn-glycero-3-phosphoethanolamine (MOPE) and saturated LPE 1-palmitoyl-2- hydroxy-sn-glycero-3-phosphoethanolamine (MPPE) oppositely affect the conformation of YOmpF. MOPE increases the protein thermal stability due to more dense packing of monomers in porin and preserves its trimeric form at elevated temperature, while MPPE weakens the contact between monomers and promotes dissociation of the protein.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/efeitos dos fármacos , Lisofosfolipídeos/farmacologia , Porinas/química , Porinas/efeitos dos fármacos , Yersinia pseudotuberculosis/química , Western Blotting , Ácidos Graxos/análise , Ácidos Graxos/química , Conformação Proteica/efeitos dos fármacos , Espectrometria de Fluorescência , Yersinia pseudotuberculosis/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...