Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 47(1): 86-89, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34951887

RESUMO

The generation of terahertz radiation in a photoconductive emitter based on nitrogen-doped single-crystal diamond was realized for the first time. Under 400 nm femtosecond laser pumping, the performance of diamond antennas with different dopant levels was investigated and compared with a reference ZnSe antenna. Terahertz waveforms and corresponding spectra were measured. A low saturation level for high-nitrogen-containing diamond substrate was revealed. The results indicate the prospects of doped diamond as a material for high-efficiency large-aperture photoconductive antennas.

2.
Nanomaterials (Basel) ; 13(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36616073

RESUMO

The use of the ultrafast pulse is the current trend in laser processing many materials, including diamonds. Recently, the orientation of the irradiated crystal face was shown to play a crucial role in the diamond to graphite transition process. Here, we develop this approach and explore the nanostructure of the sp2 phase, and the structural perfection of the graphite produced. The single pulse of the third harmonic of a Ti:sapphire laser (100 fs, 266 nm) was used to study the process of producing highly oriented graphite (HOG) layers on the (111) surface of a diamond monocrystal. The laser fluence dependence on ablated crater depth was analyzed, and three different regimes of laser-induced diamond graphitization are discussed, namely: nonablative graphitization, customary ablative graphitization, and bulk graphitization. The structure of the graphitized material was investigated by confocal Raman spectroscopy. A clear correlation was found between laser ablation regimes and sp2 phase structure. The main types of structural defects that disrupt the HOG formation both at low and high laser fluencies were determined by Raman spectroscopy. The patterns revealed give optimal laser fluence for the production of perfect graphite spots on the diamond surface.

3.
Nanomaterials (Basel) ; 10(6)2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32549323

RESUMO

Disordering of crystal lattice induced by irradiation with fast neutrons and other high-energy particles is used for the deep modification of electrical and optical properties of diamonds via significant nanoscale restructuring and defects engineering. Raman spectroscopy was employed to investigate the nature of radiation damage below the critical graphitization level created when chemical vapor deposition and natural diamonds are irradiated by fast neutrons with fluencies from 1 × 1018 to 3 × 1020 cm-2 and annealed at the 100-1700 °C range. The significant changes in the diamond Raman spectra versus the neutron-irradiated conditions are associated with the formation of intrinsic irradiation-induced defects that do not completely destroy the crystalline feature but decrease the phonon coherence length as the neutron dose increases. It was shown that the Raman spectrum of radiation-damaged diamonds is determined by the phonon confinement effect and that the boson peak is present in the Raman spectra up to annealing at 800-1000 °C. Three groups of defect-induced bands (first group = 260, 495, and 730 cm-1; second group = 230, 500, 530, 685, and 760 cm-1; and third group = 335, 1390, 1415, and 1740 cm-1) were observed in Raman spectra of fast-neutron-irradiated diamonds.

4.
PeerJ ; 6: e5571, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30245929

RESUMO

The previously undescribed dynamics of the heat shock protein HSP70 and subsequent lipid peroxidation products have been assessed alongside lactate dehydrogenase activity for Gammarus lacustris Sars, an amphipod species from the saltwater Lake Shira (Republic of Khakassia). Individuals were exposed to a gradual temperature increase of 1 °C/hour (total exposure duration of 26 hours) starting from the mean annual temperature of their habitat (7 °C) up to 33 °C. A complex of biochemical reactions occurred when saltwater G. lactustris was exposed to the gradual changes in temperature. This was characterized by a decrease in lactate dehydrogenase activity and the launching of lipid peroxidation. The HSP70 level did not change significantly during the entire experiment. In agreement with the concept of oxygen-limited thermal tolerance, an accumulation of the most toxic lipid peroxides (triene conjugates and Schiff bases) in phospholipids occurred at the same time and temperature as the accumulation of lactate. The main criterion overriding the temperature threshold was, therefore, the transition to anaerobiosis, confirmed by the elevated lactate levels as observed in our previous associated study, and by the development of cellular stress, which was expressed by an accumulation of lipid peroxidation products. An earlier hypothesis, based on freshwater individuals of the same species, has been confirmed whereby the increased thermotolerance of G. lacustris from the saltwater lake was caused by differences in energy metabolism and energy supply of nonspecific cellular stress-response mechanisms. With the development of global climate change, these reactions could be advantageous for saltwater G. lacustris. The studied biochemical reactions can be used as biomarkers for the stress status of aquatic organisms when their habitat temperature changes.

5.
Adv Mater ; 27(37): 5518-22, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26283646

RESUMO

The first application of the high-pressure-high-temperature (HPHT) technique for direct production of doped ultrasmall diamonds starting from a one-component organic precursor is reported. Heavily boron-doped diamond nanoparticles with a size below 10 nm are produced by HPHT treatment of 9-borabicyclo [3,3,1]nonane dimer molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...