Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 21694, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38066078

RESUMO

All elements of the pistachio tree are considered raw pistachio by-products. The soft hull makes up the majority of these by-products. It contains proteins, fats, minerals, vitamins, phenolics contents (TPC), and antioxidants. Early smiling pistachios are one of the most important sources of pistachio contamination with aflatoxin in the garden and processing stages. The present study aimed to evaluate pistachio hull essential oil (EO) composition, and antioxidant and antimicrobial properties under in vitro conditions. TPC, antioxidant, and antimicrobial activity were measured using the Folin-Ciocalteu reagent, 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging method, and serial dilution titration method, respectively. A gas chromatography system with a mass spectrometer (GC-MS) was utilized to determine the chemical components of the EO. The findings revealed that the quantity of TPC and anti-radical activity in IC50 were 245.43 mg gallic acid/mL and 206.32 µL/L, respectively. The free radical absorption activity of DPPH (%) increased with EO content. The inhibitory activity of EO on Staphylococcus aureus and Bacillus subtilis was much lower than that of streptomycin and penicillin. Aspergillus flavus was effectively inhibited by pistachio hull EO, comparable to fluconazole. The results obtained from GC-MS showed that the major compounds in pistachio hull essential oil include α-pinene (47.36%), terpinolene (10.57%), limonene (9.13%), and L-bornyl acetate (8.57%). The findings indicated that pistachio hull EO has potent antibacterial and antioxidant components and can be employed as a natural antimicrobial and antioxidant in food systems.


Assuntos
Anti-Infecciosos , Óleos Voláteis , Pistacia , Antioxidantes/farmacologia , Antioxidantes/química , Pistacia/química , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Cromatografia Gasosa-Espectrometria de Massas , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Radicais Livres , Testes de Sensibilidade Microbiana
3.
Food Sci Nutr ; 9(10): 5546-5556, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34646524

RESUMO

D-optimal mixture design looked to be a priceless tool for optimizing the influences of semolina flour (SF), defatted soy flour (DSF), whole quinoa flour (WQF), whole rye flour (WRF), whole oat flour (WOF), whole barley flour (WBF), and rice flour (RF) on the quality attributes of multigrain pasta (MP). Multigrain flours were considered as the independent variables evaluated with respect to three response variables containing hardness and the amount of protein and fiber. Quadratic, linear, and linear models were chosen to explain the hardness and the amount of protein and fiber of the MPs, respectively. In optimal formulation of MP, that is, SF (57.34%,), DSF (14%), WQF (11%), WRF (7.54%), WOF (5.61%), WBF (2.51%), and RF (2%), the content of fiber and protein enhanced more than 4.12 and 1.34 times compared with SP, respectively. Therefore, according to the European Union law, it can be claimed that this pasta is a source of fiber. As the amount of protein and fiber increased, the hardness and optimal cooking time decreased, while the cooking loss increased. After cooking, MP was murkier and less yellow in color. The 2, 2- diphenyl- 1- picrylhydrazyl (DPPH) inhibition activity of the MP was about 2.5 times higher than the SP. Analysis of the antioxidant properties of the samples after cooking showed that the DPPH inhibition activity of the SP and MP reduced. The results indicated that the overall acceptability of MP was higher than SP. Based on our findings, these multigrain flours are probable to be applied as nutritious complements in the pasta industry to improve the functional characteristics.

4.
Molecules ; 25(3)2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32024189

RESUMO

Nanoscale lipid bilayers, or nanoliposomes, are generally spherical vesicles formed by the dispersion of phospholipid molecules in a water-based medium by energy input. The other nanoscale object discussed in this entry, i.e., tocosome, is a recently introduced bioactive carrier made mainly from tocopheryl phosphates. Due to their bi-compartmental structure, which consists of lipidic and aqueous compartments, these nanocarriers are capable of carrying hydrophilic and hydrophobic material separately or simultaneously. Nanoliposomes and tocosomes are able to provide protection and release of sensitive food-grade bioactive materials in a sustained manner. They are being utilized for the encapsulation of different types of bioactive materials (such as drugs, vaccines, antimicrobials, antioxidants, minerals and preservatives), for the enrichment and fortification of different food and nutraceutical formulations and manufacturing of functional products. However, a number of issues unique to the nutraceutical and food industry must first be resolved before these applications can completely become a reality. Considering the potentials and promises of these colloidal carrier systems, the present article reviews various aspects of nanoliposomes, in comparison with tocosomes, including the ingredients used in their manufacture, formation mechanisms and issues pertaining to their application in the formulation of health promoting dietary supplements and functional food products.


Assuntos
Suplementos Nutricionais , Portadores de Fármacos/química , Composição de Medicamentos , Lipossomos , Nanopartículas/química , Nanotecnologia , Indústria Alimentícia , Lipossomos/química , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...