Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 11325, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37443203

RESUMO

A proposed nanosensor based on hybrid nanoshells consisting of a core of metal nanoparticles and a coating of molecules is simulated by plasmon-exciton coupling in semi classical approach. We study the interaction of electromagnetic radiation with multilevel atoms in a way that takes into account both the spatial and the temporal dependence of the local fields. Our approach has a wide range of applications, from the description of pulse propagation in two-level media to the elaborate simulation of optoelectronic devices, including sensors. We have numerically solved the corresponding system of coupled Maxwell-Liouville equations using finite difference time domain (FDTD) method for different geometries. Plasmon-exciton hybrid nanoshells with different geometries are designed and simulated, which shows more sensitive to environment refractive index (RI) than nanosensor based on localized surface plasmon. The effects of nanoshell geometries, sizes, and quantum emitter parameters on the sensitivity of nanosensors to changes in the RI of the environment were investigated. It was found that the cone-like nanoshell with a silver core and quantum emitter shell had the highest sensitivity. The tapered shape of the cone like nanoshell leads to a higher density of plasmonic excitations at the tapered end of the nanoshell. Under specific conditions, two sharp, deep LSPR peaks were evident in the scattering data. These distinguishing features are valuable as signatures in nanosensors requiring fast, noninvasive response.


Assuntos
Nanopartículas Metálicas , Nanoconchas , Ressonância de Plasmônio de Superfície/métodos , Ouro , Simulação por Computador
2.
Sci Rep ; 12(1): 15430, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36104422

RESUMO

In this study, the effects of Aharonov-Bohm (AB) and magnetic fields on the thermodynamic and magneto-transport properties of TiH diatomic molecule using the Deng-Fan potential as a model are investigated. The functional analysis approach (FAA) is used to solve the Schrodinger equation in the presence of magnetic and AB fields with Deng-Fan potential. The energy equation, as well as the wave function, have been derived. The analytic expressions for the thermo-magnetic and transport properties of the Deng-Fan potential are derived using the energy equation and the partition function. These properties obtained are thoroughly analysed utilising graphical representations. Our analysis shows that the magnetic susceptibility of the TiH exhibits a diamagnetic behaviour, and the specific heat capacity behaviour agrees with the famous Dulong-Petit law when the system is subjected to AB field variations and a fixed magnetic field. Albeit, a slight anomaly is observed in the behaviour of the specific heat capacity. Our findings will be valuable in various fields of physics, including chemical and molecular physics and condensed matter physics, where the derived models could be applied to study other diatomic molecules and quantum dots, respectively.

3.
Artigo em Inglês | MEDLINE | ID: mdl-33424191

RESUMO

In the COVID-19 pandemic era, undoubtedly mathematical modeling helps epidemiological scientists and authorities to take informing decisions about pandemic planning, wise resource allocation, introducing relevant non-pharmaceutical interventions and implementation of social distancing measures. The current coronavirus disease (COVID-19) emerged in the end of 2019, Wuhan, China, spreads quickly in the world. In this study, an entropy-based thermodynamic model has been used for predicting and spreading the rate of COVID-19. In our model, all the epidemic details were considered into a single time-dependent parameter. The parameter was analytically determined using four constraints, including the existence of an inflexion point and a maximum value. Our model has been layout-based the Shannon entropy and the maximum rate of entropy production of postulated complex system. The results show that our proposed model fits well with the number of confirmed COVID-19 cases in daily basis. Also, as a matter of fact that Shannon entropy is an intersection of information, probability theory, (non)linear dynamical systems and statistical physics, the proposed model in this study can be further calibrated to fit much better on COVID-19 observational data, using the above formalisms.

4.
J Chem Phys ; 125(21): 214504, 2006 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-17166030

RESUMO

We study the direct correlation function (DCF) of a classical fluid mixture of nonspherical molecules. The components of the mixture are two types of hard ellipsoidal molecules with different elongations, interacting through the hard Gaussian overlap (HGO) model. Two different approaches are used to calculate the DCFs of this fluid, and the results are compared. Here, the Pynn approximation [J. Chem. Phys. 60, 4579 (1974)] is extended to calculate the DCF of the binary mixtures of HGO molecules, then we use a formalism based on the weighted density functional theory introduced by Chamoux and Perera [J. Chem. Phys. 104, 1493 (1996)]. These results are fairly in agreement with each other. The pressure of this system is also calculated using the Fourier zero components of the DCF. The results are in agreement with the Monte Carlo molecular simulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...