Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
AAPS PharmSciTech ; 22(7): 235, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34498147

RESUMO

Molecular dispersions are a highly effective method of increasing bioavailability for a poorly soluble active pharmaceutical ingredient (API) and can be prepared on a large scale by hot melt extrusion (HME). Processing thermally labile active pharmaceutical ingredients (APIs) via HME is generally more difficult, with operating temperatures limited to below that of the API melting point. API melting is considered essential to facilitate the formation of a fully homogeneous amorphous system. Processing below the melting point renders the system much more susceptible to residual crystalline content; hence, HME is not suitable for APIs which degrade upon melting. In the following work, meloxicam (MEL) was used as a model API, possessing properties of high melting temperature and thermal lability. In this proof of concept work, a modified HME method, termed solvent-assisted HME, was used to overcome this issue and prepare an amorphous solid dispersion using HME, wherein a solvent was incorporated in the formulation blend during extrusion and removed post-processing. Formulations containing 10%wt meloxicam (MEL) and 90%wt polyvinylpyrrolidone vinyl acetate (PVPVA) copolymer were extruded using a twin-screw extruder at temperatures below the melting point of MEL. Dimethylformamide (DMF) solvent was added directly into the extruder barrel through a liquid addition port, resulting in extrudate products having a higher conversion of API to the amorphous form. The incorporation of solvent allowed a significant reduction in processing temperatures due to its increased mobility, while also driving the conversion of the API to its amorphous form. The solvent was successfully reduced through a secondary drying step using a vacuum oven. This advancement has demonstrated the potential for thermally labile APIs to be processed via HME expanding the applications of this technology.


Assuntos
Química Farmacêutica , Tecnologia de Extrusão por Fusão a Quente , Composição de Medicamentos , Temperatura Alta , Povidona , Solubilidade , Solventes
2.
Gene Ther ; 24(1): 31-39, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27824330

RESUMO

Recombinant human platelet-derived growth factor-BB (rhPDGF-BB) promotes soft tissue and bone healing, and is Food and Drug Administration-approved for treatment of diabetic ulcers and periodontal defects. The short half-life of topical rhPDGF-BB protein application necessitates bolus, high-dose delivery. Gene therapy enables sustained local growth factor production. A novel gene activated matrix delivering polyplexes of polyethylenimine (PEI)-plasmid DNA encoding PDGF was evaluated for promotion of periodontal wound repair in vivo. PEI-pPDGF-B polyplexes were tested in human periodontal ligament fibroblasts and human gingival fibroblasts for cell viability and transfection efficiency. Collagen scaffolds containing PEI-pPDGF-B polyplexes at two doses, rhPDGF-BB, PEI vector or collagen alone were randomly delivered to experimentally induced tooth-supporting periodontal defects in a rodent model. Mandibulae were collected at 21 days for histologic observation and histomorphometry. PEI-pPDGF-B polyplexes were biocompatible to cells tested and enzyme-linked immunosorbent assay confirmed the functionality of transfection. Significantly greater osteogenesis was observed for collagen alone and rhPDGF-BB versus the PEI-containing groups. Defects treated with sustained PDGF gene delivery demonstrated delayed healing coupled with sustained inflammatory cell infiltrates lateral to the osseous defects. Continuous PDGF-BB production by nonviral gene therapy could have delayed bone healing. This nonviral gene delivery system in this model appeared to prolong inflammatory response, slowing alveolar bone regeneration in vivo.


Assuntos
Materiais Biocompatíveis/efeitos adversos , Regeneração Óssea , Técnicas de Transferência de Genes/efeitos adversos , Osteogênese , Doenças Periodontais/terapia , Fator de Crescimento Derivado de Plaquetas/genética , Animais , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/fisiologia , Humanos , Fator de Crescimento Derivado de Plaquetas/metabolismo , Polietilenoimina/efeitos adversos , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...