Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Res Pharm Sci ; 18(1): 78-88, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36846736

RESUMO

Background and purpose: Although some proposed mechanisms responsible for tamoxifen resistance have already been present, further study is needed to determine the mechanisms underlying tamoxifen resistance more clearly. The critical role of Notch signaling has been described in promoting resistance in therapeutics, but there is little information about its role in tamoxifen resistance progression. Experimental approach: In the present study, the expression of Notch pathway genes, including Notch4, nicastrin and the Notch downstream target Hes1 was evaluated using quantitative RT-PCR in 36 tamoxifen-resistant (TAM-R) and 36 tamoxifen-sensitive (TAM-S) patients. Expression data were correlated with the clinical outcome and survival of patients. Findings/Results: mRNA levels of Notch4 (fold change = 2.7), nicastrin (fold change = 6.71), and Hes1 (fold change= 7.07) were significantly higher in TAM-R breast carcinoma patients compared to sensitive cases. We confirmed all these genes were co-expressed. Hence, it seems that Notch signaling is involved in tamoxifen resistance in our TAM-R patients. Obtained results showed that Hes1, nicastrin, and Notch4 mRNA upregulation was correlated with the N stage. The extracapsular nodal extension was associated with nicastrin and Notch4 overexpression. Moreover, nicastrin overexpression was correlated with perineural invasion. Hes1 upregulation was also associated with nipple involvement. Finally, the Cox regression proportional hazard test revealed that overexpression of nicastrin was an independent worse survival factor. Conclusion and implications: Presumably, upregulation of the Notch pathway may be involved in tamoxifen resistance in breast cancer patients.

2.
Cell Mol Biol Lett ; 27(1): 33, 2022 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-35397496

RESUMO

BACKGROUND: Nowadays, conventional medical treatments such as surgery, radiotherapy, and chemotherapy cannot cure all types of cancer. A promising approach to treat solid tumors is the use of tumor-targeting peptides to deliver drugs or active agents selectively. RESULT: Introducing beneficial therapeutic approaches, such as therapeutic peptides and their varied methods of action against tumor cells, can aid researchers in the discovery of novel peptides for cancer treatment. The biomedical applications of therapeutic peptides are highly interesting. These peptides, owing to their high selectivity, specificity, small dimensions, high biocompatibility, and easy modification, provide good opportunities for targeted drug delivery. In recent years, peptides have shown considerable promise as therapeutics or targeting ligands in cancer research and nanotechnology. CONCLUSION:  This study reviews a variety of therapeutic peptides and targeting ligands in cancer therapy. Initially, three types of tumor-homing and cell-penetrating peptides (CPPs) are described, and then their applications in breast, glioma, colorectal, and melanoma cancer research are discussed.


Assuntos
Antineoplásicos , Peptídeos Penetradores de Células , Glioma , Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Peptídeos Penetradores de Células/farmacologia , Peptídeos Penetradores de Células/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Glioma/tratamento farmacológico , Humanos , Ligantes , Neoplasias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...