Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Enzymol ; 539: 113-61, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24581442

RESUMO

We recently developed a protocol for the transcriptome-wide isolation of RNA recognition elements readily applicable to any protein or ribonucleoprotein complex directly contacting RNA (including RNA helicases, polymerases, or nucleases) expressed in cell culture models either naturally or ectopically (Hafner et al., 2010). Briefly, immunoprecipitation of the RNA-binding protein of interest is followed by isolation of the crosslinked and coimmunoprecipitated RNA. In the course of lysate preparation and immunoprecipitation, the mRNAs are partially degraded using Ribonuclease T1. The isolated crosslinked RNA fragments are converted into a cDNA library and deep-sequenced using Solexa technology (see Explanatory Chapter: Next Generation Sequencing). By introducing photoreactive nucleosides that generate characteristic sequence changes upon crosslinking (see below), our protocol allows one to separate RNA segments bound by the protein of interest from the background un-crosslinked RNAs.


Assuntos
Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Animais , Sítios de Ligação , Células Cultivadas , Endopeptidase K/química , Humanos , Imunoprecipitação , Processos Fotoquímicos , Proteólise , RNA/química , RNA/isolamento & purificação , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/isolamento & purificação , Transcriptoma , Raios Ultravioleta
2.
Nat Methods ; 10(3): 253-5, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23334102

RESUMO

We introduce a biophysical model of miRNA-target interaction and infer its parameters from Argonaute 2 cross-linking and immunoprecipitation data. We show that a substantial fraction of human miRNA target sites are noncanonical and that predicted target-site affinity correlates well with the extent of target destabilization. Our model provides a rigorous biophysical approach to miRNA target identification beyond ad hoc miRNA seed-based methods.


Assuntos
Proteínas Argonautas/metabolismo , Fenômenos Biofísicos , Marcação de Genes , MicroRNAs/genética , Modelos Biológicos , RNA Mensageiro/genética , Proteínas Argonautas/genética , Pareamento de Bases , Sítios de Ligação , Interpretação Estatística de Dados , Bases de Dados Genéticas , Marcação de Genes/métodos , Células HEK293 , Células HeLa , Humanos , Imunoprecipitação , MicroRNAs/metabolismo , Probabilidade , Ligação Proteica , RNA Mensageiro/metabolismo , Transcriptoma
3.
Nat Methods ; 8(7): 559-64, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21572407

RESUMO

Cross-linking and immunoprecipitation (CLIP) is increasingly used to map transcriptome-wide binding sites of RNA-binding proteins. We developed a method for CLIP data analysis, and applied it to compare CLIP with photoactivatable ribonucleoside-enhanced CLIP (PAR-CLIP) and to uncover how differences in cross-linking and ribonuclease digestion affect the identified sites. We found only small differences in accuracies of these methods in identifying binding sites of HuR, which binds low-complexity sequences, and Argonaute 2, which has a complex binding specificity. We found that cross-link-induced mutations led to single-nucleotide resolution for both PAR-CLIP and CLIP. Our results confirm the expectation from original CLIP publications that RNA-binding proteins do not protect their binding sites sufficiently under the denaturing conditions used during the CLIP procedure, and we show that extensive digestion with sequence-specific RNases strongly biases the recovered binding sites. This bias can be substantially reduced by milder nuclease digestion conditions.


Assuntos
Reagentes de Ligações Cruzadas/química , Imunoprecipitação/métodos , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Sítios de Ligação , Proteínas de Ligação a RNA/análise
4.
BMC Genomics ; 12: 46, 2011 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-21247452

RESUMO

BACKGROUND: The piRNA pathway operates in animal germ lines to ensure genome integrity through retrotransposon silencing. The Piwi protein-associated small RNAs (piRNAs) guide Piwi proteins to retrotransposon transcripts, which are degraded and thereby post-transcriptionally silenced through a ping-pong amplification process. Cleavage of the retrotransposon transcript defines at the same time the 5' end of a secondary piRNA that will in turn guide a Piwi protein to a primary piRNA precursor, thereby amplifying primary piRNAs. Although several studies provided evidence that this mechanism is conserved among metazoa, how the process is initiated and what enzymatic activities are responsible for generating the primary and secondary piRNAs are not entirely clear. RESULTS: Here we analyzed small RNAs from three mammalian species, seeking to gain further insight into the mechanisms responsible for the piRNA amplification loop. We found that in all these species piRNA-directed targeting is accompanied by the generation of short sequences that have a very precisely defined length, 19 nucleotides, and a specific spatial relationship with the guide piRNAs. CONCLUSIONS: This suggests that the processing of the 5' product of piRNA-guided cleavage occurs while the piRNA target is engaged by the Piwi protein. Although they are not stabilized through methylation of their 3' ends, the 19-mers are abundant not only in testes lysates but also in immunoprecipitates of Miwi and Mili proteins. They will enable more accurate identification of piRNA loci in deep sequencing data sets.


Assuntos
RNA Interferente Pequeno/genética , Animais , Masculino , Camundongos , Ornitorrinco/genética , Ratos , Retroelementos/genética
5.
Nucleic Acids Res ; 39(Database issue): D245-52, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21087992

RESUMO

The stability, localization and translation rate of mRNAs are regulated by a multitude of RNA-binding proteins (RBPs) that find their targets directly or with the help of guide RNAs. Among the experimental methods for mapping RBP binding sites, cross-linking and immunoprecipitation (CLIP) coupled with deep sequencing provides transcriptome-wide coverage as well as high resolution. However, partly due to their vast volume, the data that were so far generated in CLIP experiments have not been put in a form that enables fast and interactive exploration of binding sites. To address this need, we have developed the CLIPZ database and analysis environment. Binding site data for RBPs such as Argonaute 1-4, Insulin-like growth factor II mRNA-binding protein 1-3, TNRC6 proteins A-C, Pumilio 2, Quaking and Polypyrimidine tract binding protein can be visualized at the level of the genome and of individual transcripts. Individual users can upload their own sequence data sets while being able to limit the access to these data to specific users, and analyses of the public and private data sets can be performed interactively. CLIPZ, available at http://www.clipz.unibas.ch, aims to provide an open access repository of information for post-transcriptional regulatory elements.


Assuntos
Bases de Dados Genéticas , RNA Mensageiro/química , RNA não Traduzido/química , Proteínas de Ligação a RNA/metabolismo , Animais , Sítios de Ligação , Genoma , Humanos , Camundongos , RNA Mensageiro/metabolismo , RNA de Transferência/química , RNA de Transferência/metabolismo , RNA não Traduzido/metabolismo , Análise de Sequência de RNA , Software , Interface Usuário-Computador
6.
J Vis Exp ; (41)2010 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-20644507

RESUMO

RNA transcripts are subjected to post-transcriptional gene regulation by interacting with hundreds of RNA-binding proteins (RBPs) and microRNA-containing ribonucleoprotein complexes (miRNPs) that are often expressed in a cell-type dependently. To understand how the interplay of these RNA-binding factors affects the regulation of individual transcripts, high resolution maps of in vivo protein-RNA interactions are necessary. A combination of genetic, biochemical and computational approaches are typically applied to identify RNA-RBP or RNA-RNP interactions. Microarray profiling of RNAs associated with immunopurified RBPs (RIP-Chip) defines targets at a transcriptome level, but its application is limited to the characterization of kinetically stable interactions and only in rare cases allows to identify the RBP recognition element (RRE) within the long target RNA. More direct RBP target site information is obtained by combining in vivo UV crosslinking with immunoprecipitation followed by the isolation of crosslinked RNA segments and cDNA sequencing (CLIP). CLIP was used to identify targets of a number of RBPs. However, CLIP is limited by the low efficiency of UV 254 nm RNA-protein crosslinking, and the location of the crosslink is not readily identifiable within the sequenced crosslinked fragments, making it difficult to separate UV-crosslinked target RNA segments from background non-crosslinked RNA fragments also present in the sample. We developed a powerful cell-based crosslinking approach to determine at high resolution and transcriptome-wide the binding sites of cellular RBPs and miRNPs that we term PAR-CliP (Photoactivatable-Ribonucleoside-Enhanced Crosslinking and Immunoprecipitation) (see Fig. 1A for an outline of the method). The method relies on the incorporation of photoreactive ribonucleoside analogs, such as 4-thiouridine (4-SU) and 6-thioguanosine (6-SG) into nascent RNA transcripts by living cells. Irradiation of the cells by UV light of 365 nm induces efficient crosslinking of photoreactive nucleoside-labeled cellular RNAs to interacting RBPs. Immunoprecipitation of the RBP of interest is followed by isolation of the crosslinked and coimmunoprecipitated RNA. The isolated RNA is converted into a cDNA library and deep sequenced using Solexa technology. One characteristic feature of cDNA libraries prepared by PAR-CliP is that the precise position of crosslinking can be identified by mutations residing in the sequenced cDNA. When using 4-SU, crosslinked sequences thymidine to cytidine transition, whereas using 6-SG results in guanosine to adenosine mutations. The presence of the mutations in crosslinked sequences makes it possible to separate them from the background of sequences derived from abundant cellular RNAs. Application of the method to a number of diverse RNA binding proteins was reported in Hafner et al.


Assuntos
Perfilação da Expressão Gênica/métodos , Imunoprecipitação/métodos , MicroRNAs/análise , Proteínas de Ligação a RNA/análise , Ribonucleoproteínas/análise , Sítios de Ligação , Reagentes de Ligações Cruzadas/química , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Processos Fotoquímicos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Ribonucleosídeos/química
7.
Cell ; 141(1): 129-41, 2010 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-20371350

RESUMO

RNA transcripts are subject to posttranscriptional gene regulation involving hundreds of RNA-binding proteins (RBPs) and microRNA-containing ribonucleoprotein complexes (miRNPs) expressed in a cell-type dependent fashion. We developed a cell-based crosslinking approach to determine at high resolution and transcriptome-wide the binding sites of cellular RBPs and miRNPs. The crosslinked sites are revealed by thymidine to cytidine transitions in the cDNAs prepared from immunopurified RNPs of 4-thiouridine-treated cells. We determined the binding sites and regulatory consequences for several intensely studied RBPs and miRNPs, including PUM2, QKI, IGF2BP1-3, AGO/EIF2C1-4 and TNRC6A-C. Our study revealed that these factors bind thousands of sites containing defined sequence motifs and have distinct preferences for exonic versus intronic or coding versus untranslated transcript regions. The precise mapping of binding sites across the transcriptome will be critical to the interpretation of the rapidly emerging data on genetic variation between individuals and how these variations contribute to complex genetic diseases.


Assuntos
Técnicas Genéticas , MicroRNAs/metabolismo , RNA não Traduzido/genética , Proteínas de Ligação a RNA/metabolismo , Sequências Reguladoras de Ácido Ribonucleico , Sequência de Bases , Reagentes de Ligações Cruzadas/metabolismo , Humanos , Dados de Sequência Molecular , Nucleosídeos/metabolismo , Mutação Puntual , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...