Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncol Res ; 32(7): 1231-1237, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948023

RESUMO

Background: Despite the availability of chemotherapy drugs such as 5-fluorouracil (5-FU), the treatment of some cancers such as gastric cancer remains challenging due to drug resistance and side effects. This study aimed to investigate the effect of celastrol in combination with the chemotherapy drug 5-FU on proliferation and induction of apoptosis in human gastric cancer cell lines (AGS and EPG85-257). Materials and Methods: In this in vitro study, AGS and EPG85-257 cells were treated with different concentrations of celastrol, 5-FU, and their combination. Cell proliferation was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The synergistic effect of 5-FU and celastrol was studied using Compusyn software. The DNA content at different phases of the cell cycle and apoptosis rate was measured using flow cytometry. Results: Co-treatment with low concentrations (10% inhibitory concentration (IC10)) of celastrol and 5-FU significantly reduced IC50 (p < 0.05) so that 48 h after treatment, IC50 was calculated at 3.77 and 6.9 µM for celastrol, 20.7 and 11.6 µM for 5-FU, and 5.03 and 4.57 µM for their combination for AGS and EPG85-257 cells, respectively. The mean percentage of apoptosis for AGS cells treated with celastrol, 5-FU, and their combination was obtained 23.9, 41.2, and 61.9, and for EPG85-257 cells 5.65, 46.9, and 55.7, respectively. In addition, the 5-FU and celastrol-5-FU combination induced cell cycle arrest in the synthesis phase. Conclusions: Although celastrol could decrease the concentration of 5-fluorouracil that sufficed to suppress gastric cancer cells, additional studies are required to arrive at conclusive evidence on the anticancer effects of celastrol.


Assuntos
Apoptose , Proliferação de Células , Sinergismo Farmacológico , Fluoruracila , Triterpenos Pentacíclicos , Neoplasias Gástricas , Triterpenos , Humanos , Triterpenos Pentacíclicos/farmacologia , Fluoruracila/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Triterpenos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Ciclo Celular/efeitos dos fármacos
2.
Biometals ; 37(2): 305-319, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37917350

RESUMO

The prevalence of cognitive impairment in multiple sclerosis (MS) patients is estimated to be approximately 40-60%. There is an increasing body of evidence regarding the impact of both selenium and crocin as antioxidant agents on cognitive function. In the present study, for the first time, we investigated the effect of crocin-selenium nanoparticles (Cor@SeNs) on cognitive function and oxidative stress markers in MS patients. A triple-blind randomized clinical trial was conducted among 60 MS patients. The participants were randomly divided in a 1:1 ratio to either the Cor@SeNs or placebo group, employing block randomization. During the course of 12 weeks, the participants received Cor@SeNs capsules, containing 5.74 mg crocin and 55 mcg Selenium, or placebo capsules. Cognition assessed using the Persian version of the Brief International Cognitive Assessment for MS (BICAMS) battery. Serum levels of total antioxidant capacity (TAC), glutathione reductase (GR) activity and malondialdehyde (MDA) determined by colorimetric kits. Data analysis was performed in SPSS, version 26. P < 0.05 was considered as the significant range. The mean ± SD of TAC change was 0.03 ± 0.07 mM vs. - 0.03 ± 0.09 mM in intervention and placebo groups, respectively (Time × group effect P: 0.01; effect size: 0.10). The time effect of intervention on the California Verbal Learning Test second edition (CVLT-II) (P < 0.01; effect size: 0.29), CVLT-II-delay (P < 0.01; effect size: 0.29), and the Symbol Digit Modalities Test (SDMT) (P < 0.01; effect size: 0.18) was increasing and significant. In addition, the time effect of intervention on GR activity was significant and decreasing in both groups (P < 0.01; effect size: 0.20). Our results suggested a significant effect of the Cor@SeNs intervention in improving TAC. We also observed a significant improvement in cognitive function in both groups during our study. However, although not statistically significant, a higher amount of change in cognitive function and serum antioxidant markers was noted in the Cor@SeNs group compared to the placebo group. This is the first study on this nano product with low dose of selenium and crocin. More investigations with longer duration and varied doses are suggested.


Assuntos
Carotenoides , Esclerose Múltipla , Selênio , Humanos , Esclerose Múltipla/tratamento farmacológico , Selênio/farmacologia , Selênio/uso terapêutico , Antioxidantes , Cognição , Estresse Oxidativo , Biomarcadores
3.
Int J Biol Macromol ; 253(Pt 4): 127060, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37774811

RESUMO

The use of nucleic acid to control the expression of genes relevant to tumor progression is a key therapeutic approach in cancer research. Therapeutics based on nucleic acid provide novel concepts for untreatable targets. Nucleic acids as molecular medications must enter the target cell to be effective and obstacles in the systemic delivery of DNA or RNA limit their use in a clinical setting. The creation of nucleic acid delivery systems based on nanoparticles in order to circumvent biological constraints is advancing quickly. The ease of synthesis and surface modification, biocompatibility, biodegradability, cost-effectiveness and high loading capability of nucleic acids have prompted the use of mesoporous silica nanoparticles (MSNs) in gene therapy. The unique surface features of MSNs facilitate their design and decoration for high loading of nucleic acids, immune system evasion, cancer cell targeting, controlled cargo release, and endosomal escape. Reports have demonstrated successful therapeutic outcomes with the administration of a variety of engineered MSNs capable of delivering genes to tumor sites in laboratory animals. This comprehensive review of studies about siRNA, miRNA, shRNA, lncRNA and CRISPR/Cas9 delivery by MSNs reveals engineered MSNs as a safe and efficient system for gene transfer to cancer cells and cancer mouse models.


Assuntos
MicroRNAs , Nanopartículas , Neoplasias , Animais , Camundongos , Portadores de Fármacos/uso terapêutico , Dióxido de Silício , Sistemas de Liberação de Medicamentos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/uso terapêutico , Nanopartículas/uso terapêutico , Porosidade , Neoplasias/tratamento farmacológico , Neoplasias/genética , Genes Neoplásicos
4.
Front Neurol ; 14: 1126215, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37122312

RESUMO

Introduction: Depression, fatigue, and anxiety are three common clinical comorbidities of multiple sclerosis (MS). We investigated the role of physical activity (PA) level and body mass index (BMI) as modifiable lifestyle factors in these three comorbidities. Methods: A cross-sectional study was conducted in the MS specialist clinic of Sina Hospital, Tehran, Iran. Demographic and clinical data were collected. BMI was categorized in accordance with the WHO's standard classification. Physical activity (PA) level and sitting time per day were obtained using the short form of the International Physical Activity Questionnaire (IPAQ-SF). Fatigue, anxiety, and depression scores were measured using the Persian version of the Fatigue Severity Scale (FSS), Beck Anxiety Inventory (BAI), and Beck's Depression Inventory II (BDI-II) questionnaires, respectively. The correlation between the metabolic equivalent of tasks (MET), BMI, and daily sitting hours with depression, anxiety, and fatigue were checked using the linear regression test. The normal BMI group was considered a reference, and the difference in quantitative variables between the reference and the other groups was assessed using an independent sample t-test. Physical activity was classified with tertiles, and the difference in depression, anxiety, and fatigue between the PA groups was evaluated by a one-way ANOVA test. Results: In total, 85 MS patients were recruited for the study. The mean ± SD age of the participants was 39.07 ± 8.84 years, and 72.9% (n: 62) of them were female. The fatigue score was directly correlated with BMI (P: 0.03; r: 0.23) and sitting hours per day (P: 0.01; r: 0.26) and indirectly correlated with PA level (P < 0.01; r: -0.33). Higher depression scores were significantly correlated with elevated daily sitting hours (P: 0.01; r: 0.27). However, the correlation between depression with PA and BMI was not meaningful (p > 0.05). Higher anxiety scores were correlated with BMI (P: 0.01; r: 0.27) and lower PA (P: 0.01; r: -0.26). The correlation between anxiety and sitting hours per day was not significant (p > 0.05). Patients in the type I obesity group had significantly higher depression scores than the normal weight group (23.67 ± 2.30 vs. 14.05 ± 9.12; P: 0.001). Fatigue (32.61 ± 14.18 vs. 52.40 ± 12.42; P: <0.01) and anxiety (14.66 ± 9.68 vs. 27.80 ± 15.48; P: 0.01) scores were significantly greater among participants in the type II obesity group in comparison with the normal weight group. Fatigue (P: 0.01) and anxiety (P: 0.03) scores were significantly different in the three levels of PA, but no significant difference was found in the depression score (P: 0.17). Conclusion: Our data suggest that a physically active lifestyle and being in the normal weight category are possible factors that lead to lower depression, fatigue, and anxiety in patients with MS.

5.
Reprod Domest Anim ; 58(7): 935-945, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37128978

RESUMO

This study was aimed at developing a type of slow-release progesterone micro-particles useable in a single intramuscular injection for estrus synchronization in non-breeding season ewes. A total of 66 ewes were randomly assigned into four groups: CIDR (n = 16): exposed to intravaginal CIDR for 12 days, and three experimental groups, i.e., T100 (n = 16), T150 (n = 17) and T200 (n = 17), receiving a single intramuscular injection of 100, 150 and 200 mg slow-release progesterone, respectively. Blood sampling was performed on all ewes at five different times, and the ELISA method measured progesterone levels. No significant differences were observed in progesterone levels among the groups in each sampling time. More than 90% of ewes in the CIDR, T100 and T150 groups and all those in T200 showed estrus behaviour, and the rate was not significantly different between groups. The difference in the mean interval from progesterone treatment to estrus was also insignificant. The parturition rate declined by increasing the dose of injected progesterone; although it was similar in CIDR and T100 groups, it decreased significantly in T150 and T200 . Since our injectable progesterone formulation was successful in the induction and synchronization of estrus in ewes out of the breeding season, it can be applied as an alternative to the conventional progesterone containing intravaginal devices.


Assuntos
Sincronização do Estro , Progesterona , Feminino , Ovinos , Animais , Sincronização do Estro/métodos , Estações do Ano , Administração Intravaginal , Estro , Preparações de Ação Retardada
6.
Arch Dermatol Res ; 315(5): 1333-1345, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36576582

RESUMO

This study aims to prepare and evaluate a skin patch containing mesoporous silica nanoparticles with doxycycline for skin wound healing in a rat model. For this purpose, 84 female rats were randomly placed in four equal groups: (A) Control group with only skin defects and no therapeutic intervention; (B) Chitosan group in which a chitosan skin patch without loading any drug was placed on their skin defect; (C); The ChMesN group had a chitosan skin patch containing drug-free mesoporous silica nanoparticles; (D) ChMesND group had a skin patch loaded with doxycycline loaded with mesoporous silica nanoparticles on their skin defect. The histological results showed that on the 3rd day of the study, collagen fiber orientation was significantly higher in the ChMesND group than in the other groups. On the 7th day of the study, neovascularization, and inflammation in the ChMesND group were significantly higher and lower than in the other groups, respectively. On day 21, the most re-epithelialization was observed in the ChMesND group. It was found that on day 7, the wound area in the ChMesND group was significantly less than in other groups. On the 21st day of the study, the minimal experimental wound area was related to chitosan and ChMesND groups. Although chitosan has anti-inflammatory effects, its combination with doxycycline with several beneficial biological effects can have significant therapeutic effects with chitosan. Hence, it can be concluded that chitosan skin patch containing doxycycline can be suitable dressings for managing and accelerating the healing of skin wounds.


Assuntos
Quitosana , Nanopartículas , Ratos , Feminino , Animais , Quitosana/farmacologia , Quitosana/uso terapêutico , Doxiciclina/farmacologia , Dióxido de Silício/farmacologia , Cicatrização , Pele/patologia
7.
Pharmaceuticals (Basel) ; 15(11)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36355552

RESUMO

The present study aimed to prepare and evaluate a controlled-release system based on a chitosan scaffold containing selenium nanoparticles loaded with doxycycline. Its topical application in skin wound healing in rats was investigated. Therefore, 80 female rats were used and, after creating experimental skin defects on their back, were randomly divided into four equal groups: the control group without any therapeutic intervention; the second group received a chitosan transdermal patch (Ch); the third group received chitosan transdermal patch loaded with selenium nanoparticles (ChSeN), and the last group received chitosan transdermal patch containing selenium nanoparticle loaded by doxycycline (ChSeND). Morphological and structural characteristics of the synthesized patches were evaluated, and in addition to measuring the skin wound area on days 3, 7, and 21, a histopathological examination was performed. On the third day of the study, less hemorrhage and inflammation and more neo-vascularization were seen in the ChSeND group. Moreover, on day 7, less inflammation and collagen formation were recorded in the ChSeN and ChSeND groups than in the other groups. At the same time, more neo-vascularization and re-epithelialization were seen in the ChSeND group on days 7 and 21. In addition, on day 21 of the study, the most collagen formation was in this group. Examination of the wound area also showed that the lowest area belonged to the ChSeND group. The results showed that the simultaneous presence of selenium nanoparticles and doxycycline in the ChSeND group provided the best repair compared to the control, Ch and ChSeN groups.

8.
Int J Biol Macromol ; 213: 498-515, 2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-35623463

RESUMO

The lack of vascularization in the white-red and white zone of the meniscus causes these zones of tissue to have low self-healing capacity in case of injury and accelerate osteoarthritis (OA). In this study, we have developed hybrid constructs using polycaprolactone (PCL) and decellularized meniscus extracellular matrix (DMECM) surface modified by gelatin (G), hyaluronic acid (HU) and selenium (Se) nanoparticles (PCL/DMECM/G/HU/Se), following by the cross-linking of the bio-polymeric surface. Material characterization has been performed on the fabricated scaffold using scanning electron microscopy (SEM), Fourier transforms infrared (FTIR) spectroscopy, swelling and degradation analyses, and mechanical tests. In Vitro, investigations have been conducted by C28/I2 human chondrocyte culture into the scaffold and evaluated the cytotoxicity and cell/scaffold interaction. For the in vivo study, the scaffolds were transplanted into the defect sites of female New Zealand white rabbits. Good regeneration was observed after two months. We have concluded that the designed PCL/DMECM/G/HU construct can be a promising candidate as a meniscus tissue engineering scaffold to facilitate healing.


Assuntos
Gelatina , Menisco , Animais , Feminino , Gelatina/química , Ácido Hialurônico , Poliésteres/química , Coelhos , Engenharia Tecidual/métodos , Alicerces Teciduais/química
9.
Toxicol Appl Pharmacol ; 441: 115989, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35314202

RESUMO

Due to recent advances in the field of small molecule-based drugs, designing an efficient siRNA delivery system seems essential. Here, modified sets of lipids conjugated with cell-penetrating TAT peptide, MMP2 enzyme-sensitive moiety, and cetuximab antibodies against the EGF receptor were synthesized, purified and verified on HPLC, TLC, SEM, and DLS analyses. Different cellular and molecular experiments were designed to evaluate the transfection efficiency, targeting properties, and functions, including cytotoxicity assay, resensitization assessments, flow cytometry-based uptake assay, BCRP silencing efficiency, real-time PCR, and western blotting. The final targeted liposomes represented an average diameter of 160 nm; zeta-potential and siRNA encapsulation rates were respectively around -28.9 ± 3.16 mV and 88.3 ± 0.9 w/w. The siBCRP carried by the TAT+Cetuximab+ liposome led to an increase in the tumoricidal effect of mitoxantrone by a reduction in IC50 value by 4-fold (*** P < 0.001). Flow cytometry results showed that the cellular uptake rate of final immunoliposomes was significantly higher than the naked liposomes (*** P < 0.001). The Targeted siRNA encapsulating liposomes decreased BCRP transcript and protein levels in MCF7-MX cells by 0.24 and 0.2-fold after 48 h, respectively. Due to the silencing results of the BCRP by the encapsulated siRNA and the inhibitory effects of cetuximab on the EGFR, this formulation could widely be utilized as a carrier for tumor-directed gene delivery.


Assuntos
Neoplasias da Mama , Nanopartículas , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Cetuximab/farmacologia , Resistência a Múltiplos Medicamentos , Feminino , Humanos , Lipossomos , Nanopartículas/química , Proteínas de Neoplasias , RNA Interferente Pequeno/genética
10.
J Invest Surg ; 35(5): 996-1011, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34666588

RESUMO

Aims:A controlled release drug delivery system loaded with buprenorphine and ketorolac was synthesized and used in the experimental model of bone defect and while evaluating the inflammatory response, the repair process in the defects was investigated.Materials and methods:To determine the effectiveness of the synthesized the mentioned systems, 5 groups were defined; the control group, the chitosan hydrogel receiving group (chitosan group), the ketorolac-loaded chitosan hydrogel group (ketorolac group), the buprenorphine-loaded chitosan hydrogel receiving group (buprenorphine group), and the chitosan hydrogel-loading group loaded with a combination of ketorolac and buprenorphine (ketorolac-buprenorphine group). Results:The results showed that the population of leukocytes (tWBC) and neutrophils on different days of the study in the control group compared to other groups had a significant increase (P < 0.05) while on day 7 of the study in the ketorolac group these parameters decreased significantly compared to other groups (P < 0.05). While examining the histological changes in the experimental defect created in the proximal tibia of rats at different times, some inflammatory indices such as total and differential leukocyte population, plasma concentrations of TNF-α and IL-6 were compared in different groups (P < 0.05). The various evaluated data showed that among the different groups, in the control and ketorolac-buprenorphine groups, there was the lowest and highest control of inflammatory response and bone repair, respectively.Conclusion:In the ketorolac group due to the impact of ketorolac on leukocyte populations the best bone healing can be expected among the different treatment groups.


Assuntos
Buprenorfina , Quitosana , Animais , Preparações de Ação Retardada , Epífises , Hidrogéis , Cetorolaco , Ratos , Tíbia
11.
Sci Rep ; 11(1): 20531, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34654836

RESUMO

Although siRNA is a promising technology for cancer gene therapy, effective cytoplasmic delivery has remained a significant challenge. In this paper, a potent siRNA transfer system with active targeting moieties toward cancer cells and a high loading capacity is introduced to inhibit drug resistance. Mesoporous silica nanoparticles are of great potential for developing targeted gene delivery. Amino-modified MSNs (NH2-MSNs) were synthesized using a modified sol-gel method and characterized by FTIR, BET, TEM, SEM, X-ray diffraction, DLS, and 1H-NMR. MDR1-siRNA was loaded within NH2-MSNs, and the resulting negative surface was capped by functionalized chitosan as a protective layer. Targeting moieties such as TAT and folate were anchored to chitosan via PEG-spacers. The loading capacity of siRNA and the protective effect of chitosan for siRNA were determined by gel retardation assay. MTT assay, flow cytometry, real-time PCR, and western blot were performed to study the cytotoxicity, cellular uptake assay, targeting evaluation, and MDR1 knockdown efficiency. The synthesized NH2-MSNs had a particle size of ≈ 100 nm and pore size of ≈ 5 nm. siRNA was loaded into NH2-MSNs with a high loading capacity of 20% w/w. Chitosan coating on the surface of siRNA-NH2-MSNs significantly improved the siRNA protection against enzyme activity compared to naked siRNA-NH2-MSNs. MSNs and modified MSNs did not exhibit significant cytotoxicity at therapeutic concentrations in the EPG85.257-RDB and HeLa-RDB lines. The folate-conjugated nanoparticles showed a cellular uptake of around two times higher in folate receptor-rich HeLa-RDB than EPG85.257-RDB cells. The chitosan-coated siRNA-NH2-MSNs produced decreased MDR1 transcript and protein levels in HeLa-RDB by 0.20 and 0.48-fold, respectively. The results demonstrated that functionalized chitosan-coated siRNA-MSNs could be a promising carrier for targeted cancer therapy. Folate-targeted nanoparticles were specifically harvested by folate receptor-rich HeLa-RDB and produced a chemosensitized phenotype of the multidrug-resistant cancer cells.


Assuntos
Carcinoma/terapia , Resistencia a Medicamentos Antineoplásicos , Terapia Genética/métodos , RNA Interferente Pequeno/administração & dosagem , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Quitosana/química , Ácido Fólico/química , Células HeLa , Humanos , Nanopartículas/química , Dióxido de Silício
12.
Nanomaterials (Basel) ; 11(7)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209471

RESUMO

Resistance to temozolomide (TMZ) is the main cause of death in glioblastoma multiforme (GBM). The use of nanocarriers for drug delivery applications is one of the known approaches to overcome drug resistance. This study aimed to investigate the possible effect of selenium-chitosan nanoparticles loaded with TMZ on the efficacy of TMZ on the expression of MGMT, E2F6, and RELA genes and the rate of apoptosis in the C6 cell line. Selenium nanoparticles (SNPs) were loaded with TMZ and then they were coated by Eudragit® RS100 (Eud) and chitosan (CS) to prepare Se@TMZ/Eud-Cs. Physicochemical properties were determined by scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDAX), thermal gravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FTIR), and dynamic light scattering (DLS) methods. Se@TMZ/Eud-Cs was evaluated for loading and release of TMZ by spectrophotometric method. Subsequently, SNPs loaded with curcumin (as a fluorophore) were analyzed for in vitro uptake by C6 cells. Cytotoxicity and apoptosis assay were measured by MTT assay and Annexin-PI methods. Finally, real-time PCR was utilized to determine the expression of MGMT, E2F6, and RELA genes. Se@TMZ/Eud-Cs was prepared with an average size of 200 nm as confirmed by the DLS and microscopical methods. Se@TMZ/Eud-Cs presented 82.77 ± 5.30 loading efficiency with slow and pH-sensitive release kinetics. SNPs loaded with curcumin showed a better uptake performance by C6 cells compared with free curcumin (p-value < 0.01). Coated nanoparticles loaded with TMZ showed higher cytotoxicity, apoptosis (p-value < 0.0001), and down-regulation of MGMT, E2F6, and RELA and lower IC50 value (p-value < 0.0001) than free TMZ and control (p-value < 0.0001) groups. Using Cs as a targeting agent in Se@TMZ/Eud-Cs system improved the possibility for targeted drug delivery to C6 cells. This drug delivery system enhanced the apoptosis rate and decreased the expression of genes related to TMZ resistance. In conclusion, Se@TMZ/Eud-Cs may be an option for the enhancement of TMZ efficiency in GBM treatment.

13.
Artif Cells Nanomed Biotechnol ; 47(1): 4020-4029, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31595797

RESUMO

Nowadays, the development of drug-loaded electrospun organic-inorganic composite scaffolds for tissue engineering application is an attractive approach. In this study, a composite scaffold of Poly-l-lactic acid (PLLA) incorporated dexamethasone (Dexa) loaded Mesoporous Silica Nanoparticles (MSN) coated with Chitosan (CS) were fabricated by electrospinning for bone tissue engineering application. The MSN was prepared by precipitation method. After that, Dexamethasone (Dexa) was loaded into MSNs (MSN-Dexa). In the following, CS was coated over the prepared nanoparticles to form MSN-Dexa@CS and then, were mixed to PLLA solution to form MSN-Dexa@CS/PLLA composite for electrospinning. The surface morphology, hydrophilicity, tensile strength and the bioactivity of the scaffolds were characterized. The osteogenic proliferation and differentiation potential were evaluated by MTT assay and by measuring the basic osteogenic markers: the activity of the enzyme alkaline phosphatase and the level of calcium deposition. The composite scaffolds prepared here have conductive surface property and have a better osteogenic potential than pure PLLA scaffolds. Hence, the controlled release of nanoparticle containing Dexa from composite scaffold supported the osteogenesis and made the composite scaffolds ideal candidates for bone tissue engineering application and pH-sensitive delivery of drugs at the site of implantation in tissue regeneration.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Quitosana/química , Dexametasona/química , Dexametasona/farmacologia , Nanopartículas/química , Poliésteres/química , Dióxido de Silício/química , Adesão Celular , Proliferação de Células , Células Cultivadas , Dexametasona/administração & dosagem , Sistemas de Liberação de Medicamentos , Humanos , Células-Tronco Mesenquimais/citologia , Osteogênese/efeitos dos fármacos , Porosidade , Propriedades de Superfície , Resistência à Tração , Engenharia Tecidual , Alicerces Teciduais/química
14.
J Cell Physiol ; 234(11): 20769-20778, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31001890

RESUMO

Gene therapy using biocompatible cationic liposomes is amongst promising approaches that decreases death from cancers. Here an invasive multidrug resistant cell model has been developed by lentiviral transfection. In parallel phospholipids have been covalently conjugated to TAT, MMP2, and Herceptin. The functional lipids have been mixed to generate intelligent liposome harboring small interfering RNA (siRNA) with high efficiency. The final liposomal complex was uniformly monodisperse and particle dimension and zeta-potential were respectively around 200 nm and -42.21 mV. Minimal cytotoxic effects have been reported for nanocarriers due to good biocompatibility of the selected phospholipids. Flourescence-activated cell sorter (FACS) analyses have been represented that surface trastuzumab and TAT specifically promote cellular uptake of liposomes in the malignant tumor cells. Assessment of MDR1 transcript and protein expression has been exhibited maximum significant downregulation around of 128-fold and 50-fold, respectively after 48 hr of liposome exposure. As it has been concluded, targeted liposomes may become a potential tool in gene delivery for improving chemotherapeutic efficiency in cancer treatment.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Resistencia a Medicamentos Antineoplásicos , Técnicas de Silenciamento de Genes , Lipossomos/imunologia , Receptor ErbB-2/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Animais , Anticorpos Monoclonais/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Galinhas , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Nanopartículas/química , Nanopartículas/ultraestrutura , Tamanho da Partícula , Fenótipo , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Eletricidade Estática
15.
Onco Targets Ther ; 9: 7315-7330, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27980423

RESUMO

Mesoporous silica nanoparticles (MSNs) are known as carriers with high loading capacity and large functionalizable surface area for target-directed delivery. In this study, a series of docetaxel-loaded folic acid- or methionine-functionalized mesoporous silica nanoparticles (DTX/MSN-FA or DTX/MSN-Met) with large pores and amine groups at inner pore surface properties were prepared. The results showed that the MSNs were successfully synthesized, having good pay load and pH-sensitive drug release kinetics. The cellular investigation on MCF-7 cells showed better performance of cytotoxicity and cell apoptosis and an increase in cellular uptake of targeted nanoparticles. In vivo fluorescent imaging on healthy BALB/c mice proved that bare MSN-NH2 are mostly accumulated in the liver but MSN-FA or MSN-Met are more concentrated in the kidney. Importantly, ex vivo fluorescent images of tumor-induced BALB/c mice organs revealed the ability of MSN-FA to reach the tumor tissues. In conclusion, DTX/MSNs exhibited a good anticancer activity and enhanced the possibility of targeted drug delivery for breast cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...