Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Lipid Atheroscler ; 13(2): 166-183, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38826184

RESUMO

Objective: The aim of this study was to evaluate the effect of the m.15059G>A mitochondrial nonsense mutation on cellular functions related to atherosclerosis, such as lipidosis, pro-inflammatory response, and mitophagy. Heteroplasmic mutations have been proposed as a potential cause of mitochondrial dysfunction, potentially disrupting the innate immune response and contributing to the chronic inflammation associated with atherosclerosis. Methods: The human monocytic cell line THP-1 and cytoplasmic hybrid cell line TC-HSMAM1 were used. An original approach based on the CRISPR/Cas9 system was developed and used to eliminate mitochondrial DNA (mtDNA) copies carrying the m.15059G>A mutation in the MT-CYB gene. The expression levels of genes encoding enzymes related to cholesterol metabolism were analyzed using quantitative polymerase chain reaction. Pro-inflammatory cytokine secretion was assessed using enzyme-linked immunosorbent assays. Mitophagy in cells was detected using confocal microscopy. Results: In contrast to intact TC-HSMAM1 cybrids, Cas9-TC-HSMAM1 cells exhibited a decrease in fatty acid synthase (FASN) gene expression following incubation with atherogenic low-density lipoprotein. TC-HSMAM1 cybrids were found to have defective mitophagy and an inability to downregulate the production of pro-inflammatory cytokines (to establish immune tolerance) upon repeated lipopolysaccharide stimulation. Removal of mtDNA harboring the m.15059G>A mutation resulted in the re-establishment of immune tolerance and the activation of mitophagy in the cells under investigation. Conclusion: The m.15059G>A mutation was found to be associated with defective mitophagy, immune tolerance, and impaired metabolism of intracellular lipids due to upregulation of FASN in monocytes and macrophages.

2.
Curr Atheroscler Rep ; 26(7): 289-304, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38805145

RESUMO

PURPOSE OF REVIEW: In this review, we explore the intriguing and evolving connections between bacterial extracellular membrane nanovesicles (BEMNs) and atherosclerosis development, highlighting the evidence on molecular mechanisms by which BEMNs can promote the athero-inflammatory process that is central to the progression of atherosclerosis. RECENT FINDINGS: Atherosclerosis is a chronic inflammatory disease primarily driven by metabolic and lifestyle factors; however, some studies have suggested that bacterial infections may contribute to the development of both atherogenesis and inflammation in atherosclerotic lesions. In particular, the participation of BEMNs in atherosclerosis pathogenesis has attracted special attention. We provide some general insights into how the immune system responds to potential threats such as BEMNs during the development of atherosclerosis. A comprehensive understanding of contribution of BEMNs to atherosclerosis pathogenesis may lead to the development of targeted interventions for the prevention and treatment of the disease.


Assuntos
Aterosclerose , Vesículas Extracelulares , Aterosclerose/microbiologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Humanos , Vesículas Extracelulares/metabolismo , Animais , Inflamação/metabolismo , Bactérias/metabolismo , Infecções Bacterianas/microbiologia , Infecções Bacterianas/complicações , Infecções Bacterianas/metabolismo
3.
Curr Med Chem ; 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38415442

RESUMO

BACKGROUND: The relationship between the cellular pro-inflammatory response and intracellular lipid accumulation in atherosclerosis is not sufficiently studied. Transcriptomic analysis is one way to establish such a relationship. Previously, we identified 10 potential key genes (IL-15, CXCL8, PERK, IL-7, IL-7R, DUSP1, TIGIT, F2RL1, TSPYL2, and ANXA1) involved in cholesterol accumulation in macrophages. It should be noted that all these genes do not directly participate in cholesterol metabolism, but encode molecules related to inflammation. METHODS: In this study, we conducted a knock-down of the 10 identified key genes using siRNA to determine their possible role in cholesterol accumulation in macrophages. To assess cholesterol accumulation, human monocyte-derived macrophages (MDM) were incubated with atherogenic LDL from patients with atherosclerosis. Cholesterol content was assessed by the enzymatic method. Differentially expressed genes were identified with DESeq2 analysis. Master genes were determined by the functional analysis. RESULTS: We found that only 5 out of 10 genes (IL-15, PERK, IL-7, IL-7R, ANXA1) can affect intracellular lipid accumulation. Knock-down of the IL-15, PERK, and ANXA1 genes prevented lipid accumulation, while knock-down of the IL-7 and IL-7R genes led to increased intracellular lipid accumulation during incubation of MDM with atherogenic LDL. Seventeen overexpressed genes and 189 underexpressed genes were obtained in the DGE analysis, which allowed us to discover 20 upregulated and 86 downregulated metabolic pathways, a number of which are associated with chronic inflammation and insulin signaling. We also elucidated 13 master regulators of cholesterol accumulation that are immune response-associated genes. CONCLUSION: Thus, it was discovered that 5 inflammation-related master regulators may be involved in lipid accumulation in macrophages. Therefore, the pro-inflammatory response of macrophages may trigger foam cell formation rather than the other way around, where intracellular lipid accumulation causes an inflammatory response, as previously assumed.

4.
Biomedicines ; 11(9)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37760871

RESUMO

Cardiovascular disease is one of the main death causes globally. Effective cardiovascular risk management requires a thorough understanding of the mechanisms underlying the disorder. Establishing early markers of the disease allows a timely intervention and prevention of further atherosclerosis development. Multiple studies confirm the correlation between pregnancy disorders and cardiovascular disease in the postpartum period. Moreover, over 30% of women experience adverse pregnancy outcomes. Thus, the examination of the links between these conditions and atherosclerotic cardiovascular disease may help to identify gender-specific risk factors. In this review, we will explore the association between several adverse pregnancy outcome conditions and atherosclerosis. The current analysis is based on the data from several recent studies on the mechanisms behind gestational diabetes, hypertensive disorders of pregnancy, miscarriages, and stillbirths and their implications for the female cardiovascular system.

5.
Life (Basel) ; 13(9)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37763334

RESUMO

Atherosclerosis is an insidious vascular disease with an asymptomatic debut and development over decades. The aetiology and pathogenesis of atherosclerosis are not completely clear. However, chronic inflammation and autoimmune reactions play a significant role in the natural course of atherosclerosis. The pathogenesis of atherosclerosis involves damage to the intima, immune cell recruitment and infiltration of cells such as monocytes/macrophages, neutrophils, and lymphocytes into the inner layer of vessel walls, and the accumulation of lipids, leading to vascular inflammation. The recruited immune cells mainly have a pro-atherogenic effect, whereas CD4+ regulatory T (Treg) cells are another heterogeneous group of cells with opposite functions that suppress the pathogenic immune responses. Present in low numbers in atherosclerotic plaques, Tregs serve a protective role, maintaining immune homeostasis and tolerance by suppressing pro-inflammatory immune cell subsets. Compelling experimental data suggest that various Treg cell-based approaches may be important in the treatment of atherosclerosis. Here we highlight the most recent advances in our understanding of the roles of FOXP3-expressing CD4+ Treg cells in the atherogenic process and discuss potential translational strategies for the treatment of atherosclerosis by Treg manipulation.

6.
Molecules ; 28(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37570643

RESUMO

Essential oils (EOs) are complex secondary metabolites identified in many plant species. Plant-derived EOs have been widely used in traditional medicine for centuries for their health-beneficial effects. Some EOs and their active ingredients have been reported to improve the cardiovascular system, in particular to provide an anti-atherosclerotic effect. The objective of this review is to highlight the recent research investigating the anti-inflammatory, anti-oxidative and lipid-lowering properties of plant-derived EOs and discuss their mechanisms of action. Also, recent clinical trials exploring anti-inflammatory and anti-oxidative activities of EOs are discussed. Future research on EOs has the potential to identify new bioactive compounds and invent new effective agents for treatment of atherosclerosis and related diseases such as diabetes, metabolic syndrome and obesity.


Assuntos
Aterosclerose , Óleos Voláteis , Humanos , Óleos Voláteis/farmacologia , Óleos Voláteis/uso terapêutico , Óleos de Plantas/farmacologia , Aterosclerose/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
7.
Biomedicines ; 11(7)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37509649

RESUMO

Selenium is an essential trace element that is essential for various metabolic processes, protection from oxidative stress and proper functioning of the cardiovascular system. Se deficiency has long been associated with multiple cardiovascular diseases, including endemic Keshan's disease, common heart failure, coronary heart disease, myocardial infarction and atherosclerosis. Through selenoenzymes and selenoproteins, Se is involved in numerous crucial processes, such as redox homeostasis regulation, oxidative stress, calcium flux and thyroid hormone metabolism; an unbalanced Se supply may disrupt these processes. In this review, we focus on the importance of Se in cardiovascular health and provide updated information on the role of Se in specific processes involved in the development and pathogenesis of atherosclerosis (oxidative stress, inflammation, endothelial dysfunction, vascular calcification and vascular cell apoptosis). We also discuss recent randomised trials investigating Se supplementation as a potential therapeutic and preventive agent for atherosclerosis treatment.

8.
Int J Mol Sci ; 24(14)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37511509

RESUMO

Atherosclerosis is a major global health problem. Being a harbinger of a large number of cardiovascular diseases, it ultimately leads to morbidity and mortality. At the same time, effective measures for the prevention and treatment of atherosclerosis have not been developed, to date. All available therapeutic options have a number of limitations. To understand the mechanisms behind the triggering and development of atherosclerosis, a deeper understanding of molecular interactions is needed. Heat shock proteins are important for the normal functioning of cells, actively helping cells adapt to gradual changes in the environment and survive in deadly conditions. Moreover, multiple HSP families play various roles in the progression of cardiovascular disorders. Some heat shock proteins have been shown to have antiatherosclerotic effects, while the role of others remains unclear. In this review, we considered certain aspects of the antiatherosclerotic activity of a number of heat shock proteins.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Humanos , Proteínas de Choque Térmico/metabolismo , Aterosclerose/tratamento farmacológico , Proteínas de Choque Térmico HSP70/metabolismo
9.
Molecules ; 28(14)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37513323

RESUMO

Atherosclerosis is the major cause of cardiovascular-disease-related death worldwide, resulting from the subendothelial accumulation of lipoprotein-derived cholesterol, ultimately leading to chronic inflammation and the formation of clinically significant atherosclerotic plaques. Oligosaccharides have been widely used in biomedical research and therapy, including tissue engineering, wound healing, and drug delivery. Moreover, oligosaccharides have been consumed by humans for centuries, and are cheap, and available in large amounts. Given the constantly increasing number of obesity, diabetes, and hyperlipidaemia cases, there is an urgent need for novel therapeutics that can economically and effectively slow the progression of atherosclerosis. In this review, we address the current state of knowledge in oligosaccharides research, and provide an update of the recent in vitro and in vivo experiments that precede clinical studies. The application of oligosaccharides could help to eliminate the residual risk after the application of other cholesterol-lowering medicines, and provide new therapeutic opportunities to reduce the associated burden of premature deaths because of atherosclerosis.


Assuntos
Aterosclerose , Placa Aterosclerótica , Humanos , Aterosclerose/tratamento farmacológico , Colesterol , Inflamação , Oligossacarídeos/uso terapêutico
10.
Biomedicines ; 11(2)2023 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-36831068

RESUMO

Mitochondrial diseases are a large class of human hereditary diseases, accompanied by the dysfunction of mitochondria and the disruption of cellular energy synthesis, that affect various tissues and organ systems. Mitochondrial DNA mutation-caused disorders are difficult to study because of the insufficient number of clinical cases and the challenges of creating appropriate models. There are many cellular models of mitochondrial diseases, but their application has a number of limitations. The most proper and promising models of mitochondrial diseases are animal models, which, unfortunately, are quite rare and more difficult to develop. The challenges mainly arise from the structural features of mitochondria, which complicate the genetic editing of mitochondrial DNA. This review is devoted to discussing animal models of human mitochondrial diseases and recently developed approaches used to create them. Furthermore, this review discusses mitochondrial diseases and studies of metabolic disorders caused by the mitochondrial DNA mutations underlying these diseases.

11.
Int J Mol Sci ; 23(2)2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35055117

RESUMO

The vascular endothelial growth factor (VEGF) family, the crucial regulator of angiogenesis, lymphangiogenesis, lipid metabolism and inflammation, is involved in the development of atherosclerosis and further CVDs (cardiovascular diseases). This review discusses the general regulation and functions of VEGFs, their role in lipid metabolism and atherosclerosis development and progression. These functions present the great potential of applying the VEGF family as a target in the treatment of atherosclerosis and related CVDs. In addition, we discuss several modern anti-atherosclerosis VEGFs-targeted experimental procedures, drugs and natural compounds, which could significantly improve the efficiency of atherosclerosis and related CVDs' treatment.


Assuntos
Aterosclerose/metabolismo , Fatores de Crescimento do Endotélio Vascular/metabolismo , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Aterosclerose/tratamento farmacológico , Fatores Biológicos/farmacologia , Fatores Biológicos/uso terapêutico , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Metabolismo dos Lipídeos , Terapia de Alvo Molecular , Fatores de Crescimento do Endotélio Vascular/efeitos dos fármacos
12.
Int J Mol Sci ; 23(2)2022 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-35055137

RESUMO

Cardiovascular diseases (CVD) are one of the leading causes of morbidity and mortality worldwide. mtDNA (mitochondrial DNA) mutations are known to participate in the development and progression of some CVD. Moreover, specific types of mitochondria-mediated CVD have been discovered, such as MIEH (maternally inherited essential hypertension) and maternally inherited CHD (coronary heart disease). Maternally inherited mitochondrial CVD is caused by certain mutations in the mtDNA, which encode structural mitochondrial proteins and mitochondrial tRNA. In this review, we focus on recently identified mtDNA mutations associated with CVD (coronary artery disease and hypertension). Additionally, new data suggest the role of mtDNA mutations in Brugada syndrome and ischemic stroke, which before were considered only as a result of mutations in nuclear genes. Moreover, we discuss the molecular mechanisms of mtDNA involvement in the development of the disease.


Assuntos
Doenças Cardiovasculares/genética , DNA Mitocondrial/genética , Mitocôndrias/genética , Mutação , Predisposição Genética para Doença , Humanos , Herança Materna
13.
J Clin Med ; 10(9)2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-34066528

RESUMO

Currently, a bidirectional relationship between the gut microbiota and the nervous system, which is considered as microbiota-gut-brain axis, is being actively studied. This axis is believed to be a key mechanism in the formation of somatovisceral functions in the human body. The gut microbiota determines the level of activation of the hypothalamic-pituitary system. In particular, the intestinal microbiota is an important source of neuroimmune mediators in the pathogenesis of cardiovascular disease. This review reflects the current state of publications in PubMed and Scopus databases until December 2020 on the mechanisms of formation and participation of neuroimmune mediators associated with gut microbiota in the development of cardiovascular disease.

14.
Toxicol Rep ; 8: 499-504, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33732625

RESUMO

AIM: The aim of this work was to study the effect of telomere length in the chromosomes of nuclear blood cells in individuals with coronary heart disease (CHD) on the development of cardiovascular complications (CVC). MATERIALS AND METHODS: DNA was isolated from nuclear blood cells of 498 study participants. The telomere length was determined by real-time polymerase chain reaction. The investigation of each sample was repeated three times. Five years after the end of this study, a telephone survey of 119 patients with CHD was conducted in order to obtain data on the presence of CVC. RESULTS: According to the results obtained, a decrease in telomere length in patients with coronary heart disease increases the risk of subsequent development of cardiovascular complications. CONCLUSION: Patients with coronary heart disease with shorter telomeres compared with conventionally healthy study participants had an increased risk of cardiovascular complications within 5 years after telomere analysis.

15.
Int J Mol Sci ; 22(2)2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33445687

RESUMO

Chronic stress is a combination of nonspecific adaptive reactions of the body to the influence of various adverse stress factors which disrupt its homeostasis, and it is also a corresponding state of the organism's nervous system (or the body in general). We hypothesized that chronic stress may be one of the causes occurence of several molecular and cellular types of stress. We analyzed literary sources and considered most of these types of stress in our review article. We examined genes and mutations of nuclear and mitochondrial genomes and also molecular variants which lead to various types of stress. The end result of chronic stress can be metabolic disturbance in humans and animals, leading to accumulation of reactive oxygen species (ROS), oxidative stress, energy deficiency in cells (due to a decrease in ATP synthesis) and mitochondrial dysfunction. These changes can last for the lifetime and lead to severe pathologies, including neurodegenerative diseases and atherosclerosis. The analysis of literature allowed us to conclude that under the influence of chronic stress, metabolism in the human body can be disrupted, mutations of the mitochondrial and nuclear genome and dysfunction of cells and their compartments can occur. As a result of these processes, oxidative, genotoxic, and cellular stress can occur. Therefore, chronic stress can be one of the causes forthe occurrence and development of neurodegenerative diseases and atherosclerosis. In particular, chronic stress can play a large role in the occurrence and development of oxidative, genotoxic, and cellular types of stress.


Assuntos
Aterosclerose/metabolismo , Aterosclerose/patologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Estresse Oxidativo/fisiologia , Animais , Homeostase/fisiologia , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Espécies Reativas de Oxigênio/metabolismo
17.
Front Cell Dev Biol ; 8: 586189, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072766

RESUMO

There is an important task of current medicine to identify mechanisms and new markers of subclinical atherosclerosis in order to develop early targets for the diagnosis and treatment of this disease, since it causes such widespread diseases as myocardial infarction, stroke, sudden death, and other common reasons of disability and mortality in developed countries. In recent years, studies of the human microbiome in different fields of medicine have become increasingly popular; there is evidence from numerous studies of the significant contribution of microbiome in different steps of atherogenesis. This review attempted to determine the current status of the databases PubMed and Scopus (until May, 2020) to highlight current ideas on the potential role of microbiome and its metabolites in atherosclerosis development, its mechanisms of action in lipids metabolism, endothelial dysfunction, inflammatory pathways, and mitochondrial dysfunction. Results of clinical studies elucidating the relationship of microbiome with subclinical atherosclerosis and cardiovascular disease considered in this article demonstrate strong association of microbiome composition and its metabolites with atherosclerosis and cardiovascular disease. Data on microbiome impact in atherogenesis open a wide perspective to develop new diagnostic and therapeutic approaches, but further comprehensive studies are necessary.

18.
Biomedicines ; 8(8)2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32752275

RESUMO

Mechanisms of lipid homeostasis and its impairment are of crucial importance for atherogenesis, and their understanding is necessary for successful development of new therapeutic approaches. In the arterial wall, macrophages play a prominent role in intracellular lipid accumulation, giving rise to foam cells that populate growing atherosclerotic plaques. Under normal conditions, macrophages are able to process substantial amounts of lipids and cholesterol without critical overload of the catabolic processes. However, in atherosclerosis, these pathways become inefficient, leading to imbalance in cholesterol and lipid metabolism and disruption of cellular functions. In this review, we summarize the existing knowledge on the involvement of macrophage lipid metabolism in atherosclerosis development, including both the results of recent studies and classical concepts, and provide a detailed description of these processes from the moment of lipid uptake with lipoproteins to cholesterol efflux.

19.
Biomedicines ; 8(7)2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32668733

RESUMO

The endoplasmic reticulum (ER) stress is an important event in the pathogenesis of different human disorders, including atherosclerosis. ER stress leads to disturbance of cellular homeostasis, apoptosis, and in the case of macrophages, to foam cell formation and pro-inflammatory cytokines production. In atherosclerosis, several cell types can be affected by ER stress, including endothelial cells, vascular smooth muscular cells, and macrophages. Modified low-density lipoproteins (LDL) and cytokines, in turn, can provoke ER stress through different processes. The signaling cascades involved in ER stress initiation are complex and linked to other cellular processes, such as lysosomal biogenesis and functioning, autophagy, mitochondrial homeostasis, and energy production. In this review, we discuss the underlying mechanisms of ER stress formation and the interplay of lipid accumulation and pro-inflammatory response. We will specifically focus on macrophages, which are the key players in maintaining chronic inflammatory milieu in atherosclerotic lesions, and also a major source of lipid-accumulating foam cells.

20.
Cells ; 9(3)2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32121535

RESUMO

Atherosclerosis is associated with acute cardiovascular conditions, such as ischemic heart disease, myocardial infarction, and stroke, and is the leading cause of morbidity and mortality worldwide. Our understanding of atherosclerosis and the processes triggering its initiation is constantly improving, and, during the last few decades, many pathological processes related to this disease have been investigated in detail. For example, atherosclerosis has been considered to be a chronic inflammation triggered by the injury of the arterial wall. However, recent works showed that atherogenesis is a more complex process involving not only the immune system, but also resident cells of the vessel wall, genetic factors, altered hemodynamics, and changes in lipid metabolism. In this review, we focus on foam cells that are crucial for atherosclerosis lesion formation. It has been demonstrated that the formation of foam cells is induced by modified low-density lipoprotein (LDL). The beneficial effects of the majority of therapeutic strategies with generalized action, such as the use of anti-inflammatory drugs or antioxidants, were not confirmed by clinical studies. However, the experimental therapies targeting certain stages of atherosclerosis, among which are lipid accumulation, were shown to be more effective. This emphasizes the relevance of future detailed investigation of atherogenesis and the importance of new therapies development.


Assuntos
Aterosclerose/imunologia , Doenças Cardiovasculares/imunologia , Células Espumosas/imunologia , Doenças Cardiovasculares/patologia , Humanos , Lipoproteínas LDL/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...