Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Hum Biol ; 35(10): e23933, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37314240

RESUMO

OBJECTIVES: This study compared the metabolic and vascular responses, to whole-body and finger cold exposure, of a traditional population lifelong exposed to extreme cold winters with Western Europeans. METHODS: Thirteen cold acclimatized Tuvan pastoralist adults (45 ± 9 years; 24.1 ± 3.2 kg/m2 ) and 13 matched Western European controls (43 ± 15 years; 22.6 ± 1.4 kg/m2 ) completed a whole-body cold (10°C) air exposure test and a cold-induced vasodilation (CIVD) test, which involved the immersion of the middle finger into ice-water for 30 min. RESULTS: During the whole-body cold exposure, the durations until the onset of shivering for three monitored skeletal muscles were similar for both groups. Cold exposure increased the Tuvans' energy expenditure by (mean ± SD) 0.9 ± 0.7 kJ min-1 and the Europeans' by 1.3 ± 1.54 kJ min-1 ; these changes were not significantly different. The forearm-fingertip skin temperature gradient of the Tuvans was lower, indicating less vasoconstriction, than the Europeans during the cold exposure (0 ± 4.5°C vs. 8.8 ± 2.7°C). A CIVD response occurred in 92% of the Tuvans and 36% of the Europeans. In line, finger temperature during the CIVD test was higher in the Tuvans than the Europeans (13.4 ± 3.4°C vs. 3.9 ± 2.3°C). CONCLUSION: Cold-induced thermogenesis and the onset of shivering were similar in both populations. However, vasoconstriction at the extremities was reduced in the Tuvans compared to the Europeans. The enhanced blood flow to the extremities could be beneficial for living in an extreme cold environment by improving dexterity, comfort, and reducing the risk of cold-injuries.


Assuntos
Regulação da Temperatura Corporal , Temperatura Cutânea , Adulto , Humanos , Temperatura Corporal , Temperatura Baixa , População Europeia , Dedos , Vasodilatação/fisiologia , Pessoa de Meia-Idade
2.
Sci Rep ; 12(1): 20127, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36418413

RESUMO

Research investigating thermoregulatory energy costs in free-living humans is limited. We determined the total energy expenditure (TEE) of Tuvan pastoralists living in an extreme cold environment and explored the contribution of physical activity and cold-induced thermogenesis. Twelve semi-nomadic pastoralists (47 ± 8 years, 64 ± 8 kg) living under traditional circumstances, in Tuva, south-central Siberia, Russia, were observed during two consecutive 6-day periods in winter. TEE was measured via the doubly labelled water technique. Skin and ambient temperatures, and physical activity were continuously monitored. The outdoor temperature during the observation period was - 27.4 ± 5.4 °C. During the daytime, the participants were exposed to ambient temperatures below 0 °C for 297 ± 131 min/day. The Tuvan pastoralists were more physically active compared to western populations (609 ± 90 min/day of light, moderate, and vigorous physical activity). In addition, TEE was 13.49 ± 1.33 MJ/day (3224 ± 318 kcal/day), which was significantly larger by 17% and 31% than predicted by body mass, and fat-free mass, respectively. Our research suggests the daily cold exposure combined with high levels of physical activity contributed to the elevated TEE. Future research should reconsider the assumption that energy costs due to thermoregulation are negligible in free-living humans.


Assuntos
Frio Extremo , Humanos , Temperatura Baixa , Ambientes Extremos , Metabolismo Energético , Termogênese
3.
Obesity (Silver Spring) ; 30(7): 1345-1350, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35746863

RESUMO

OBJECTIVE: The study was undertaken to show the magnitude of interindividual differences in energy expenditure (i.e., heat production) under normal living conditions with the aim of providing physiological evidence to support the advancement of a personalized thermal conditioning approach. METHODS: Three sets of experimental protocols with six participants were conducted at neutral and mild cold temperatures. Energy expenditure, local skin temperatures, and core body temperature were measured continuously, while cognitive performance and thermal sensation were surveyed intermittently. The protocols were designed to study the effects of several normal day activities, low-level physical activity and eating a meal, on metabolic and physiological parameters. RESULTS: Large interindividual differences among the subjects were demonstrated using non-normalized data by design. The resting metabolic rate difference was 58%, the percentage change in energy expenditure during standing compared to sitting was up to 31%, and the difference in mechanical work efficiency between the least and the most efficient individual was 39.1%. Energy expenditure increase due to the meal effect was 11.2% to 23.3% at neutral and 9.9% to 33.9% at mild cold temperatures across individuals. CONCLUSIONS: Large interindividual differences in metabolic rate under typical everyday living and office activities suggest facilitating personalized thermal conditioning instead of providing uniform temperature. Therefore, it is necessary to find noninvasive markers that can be easily measured and used as surrogates for human heat production to individualize the climate control of buildings.


Assuntos
Regulação da Temperatura Corporal , Temperatura Cutânea , Ar Condicionado , Regulação da Temperatura Corporal/fisiologia , Ergonomia , Humanos , Sensação Térmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...