Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36837131

RESUMO

Cost reduction in bipolar plates in proton exchange membrane water electrolyzers has previously been attempted by substituting bulk titanium with austenitic stainless steels protected with highly conductive and corrosion-resistant coatings. However, austenitic steels are more expensive than ferritic steels due to their high nickel content. Herein we report on the corrosion resistance of two high chromium ferritic stainless steels, AISI 442 and AISI 446, as an alternative material to manufacture bipolar plates. Electrochemical corrosion tests have shown that AISI 442 and AISI 446 have similar corrosion resistance, while AISI 446 reveals more noble corrosion potential and performs better during potentiostatic stress tests. The current density obtained during polarization at 2 V versus the standard hydrogen electrode (SHE) is 3.3 mA cm-2, which is more than two times lower than on AISI 442. Additionally, surface morphology characterization demonstrates that in contrast to AISI 442, AISI 446 is not sensitive to intercrystalline or pitting corrosion. Moreover, EDX energy dispersion analysis of AISI 446 reveals no differences in the chemical composition of the surface layer compared to the base material, as a confirmation of its high corrosion resistance. The results of this work open up the perspective of replacing austenitic stainless steels with less expensive ferritic stainless steels for the production of components such as bipolar plates in proton exchange membrane water electrolyzers.

2.
RSC Adv ; 10(34): 19982-19996, 2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35520426

RESUMO

A simple, modified Metal-Organic Chemical Deposition (MOCD) method for Pt, PtRu and PtCo nanoparticle deposition onto a variety of support materials, including C, SiC, B4C, LaB6, TiB2, TiN and a ceramic/carbon nanofiber, is described. Pt deposition using Pt(acac)2 as a precursor is shown to occur via a mixed solid/liquid/vapour precursor phase which results in a high Pt yield of 90-92% on the support material. Pt and Pt alloy nanoparticles range 1.5-6.2 nm, and are well dispersed on all support materials, in a one-step method, with a total catalyst preparation time of ∼10 hours (2.4-4× quicker than conventional methods). The MOCD preparation method includes moderate temperatures of 350 °C in a tubular furnace with an inert gas supply at 2 bar, a high pressure (2-4 bar) compared to typical MOCVD methods (∼0.02-10 mbar). Pt/C catalysts with Pt loadings of 20, 40 and 60 wt% were synthesised, physically characterised, electrochemically characterised and compared to commercial Pt/C catalysts. TEM, XRD and ex situ EXAFS show similar Pt particle sizes and Pt particle shape identifiers, namely the ratio of the third to first Pt coordination numbers modelled from ex situ EXAFS, between the MOCD prepared catalysts and commercial catalysts. Moreover, electrochemical characterisation of the Pt/C MOCD catalysts obtained ORR mass activities with a maximum of 428 A gPt -1 at 0.9 V, which has similar mass activities to the commercial catalysts (80-160% compared to the commercial Pt/C catalysts).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...