Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Surg Endosc ; 30(8): 3250-5, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26679171

RESUMO

BACKGROUND: Oxidative degradation by reactive oxygen species (ROS) from inflammation initiates cross-linking, depolymerization, and formation of a quasi-crystalline quality in polypropylene (PP) meshes that cause embrittlement (J Urol 188:1052, 2012). Embrittlement leads to change in tensile strength and is associated with post-operative complications that include pain, adhesion, dislodgment, and fragmentation. METHODS: A laboratory environment was constructed to study the relationship between concentration of ROS and change in tensile strength. Samples of Ethicon Ultrapro© PP mesh were exposed to 1 mM, 0.1 M, or 1 M hydrogen peroxide solutions for 6 months and were subjected to load displacement tensile testing (LDTT) and compared to unexposed (0 M) meshes of the same brand. RESULTS: Load at failure and elongation to failure after LDTT were determined with 95 % confidence interval. For unexposed (0 M) samples, tensile strength was 28.0 ± 2.4 lbf and elongation to failure was 2.0 ± 0.3 in. For samples exposed to 1 mM, tensile strength was 19.2 ± 1.1 lbf and the elongation to failure was 2.0 ± 0.1 in. For samples exposed to 0.1 M, tensile strength was 19.3 ± 1.6 lbf and elongation to failure was 1.9 ± 0.1 in. For samples exposed to 1 M, tensile strength was 20.7 ± 1.2 lbf and elongation to failure was 0.47 ± 0.02 in. CONCLUSION: The results demonstrated that a 6-month exposure to a physiologic range of ROS (1 mM) decreased tensile strength of PP mesh by 31 %. 1 mM and 0.1 M samples behaved similarly demonstrating properties of a quasi-crystalline nature. 1 M samples displayed qualities of extreme embrittlement. Scanning electron microscopy (SEM) observed fiber changes. 1 M meshes had features of brittle materials. Knowledge of changes in physical properties of PP meshes is useful for considerations for the development of a more biocompatible surgical mesh.


Assuntos
Peróxido de Hidrogênio/farmacologia , Teste de Materiais , Oxidantes/farmacologia , Polipropilenos , Falha de Prótese/efeitos dos fármacos , Espécies Reativas de Oxigênio/farmacologia , Telas Cirúrgicas , Resistência à Tração/efeitos dos fármacos , Humanos , Inflamação , Complicações Pós-Operatórias/imunologia , Espécies Reativas de Oxigênio/imunologia , Aderências Teciduais , Suporte de Carga
2.
J Biomech ; 32(12): 1319-29, 1999 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-10569710

RESUMO

Pulsatile flow in abdominal aortic aneurysm (AAA) models has been examined in order to understand the hemodynamics that may contribute to growth of an AAA. The model studies were conducted by experiments (flow visualization and laser Doppler velocimetry) and by numerical simulation using physiologically realistic resting and exercise flow conditions. We characterize the flow for two AAA model shapes and sizes emulating early AAA development through moderate AAA growth (mean and peak Reynolds numbers of 362 < Re(mean) < 1053 and 3308 < Re(peak) < 5696 with Womersley parameter 16.4 < alpha < 21.2). The results of our investigation indicate that AAA flow can be divided into three flow regimes: (i) Attached flow over the entire cycle in small AAAs at resting conditions, (ii) vortex formation and translation in moderate size AAAs at resting conditions, and (iii) vortex formation, translation and turbulence in moderate size AAAs under exercise conditions. The second two regimes are classified in the medical literature as disturbed flow conditions that have been correlated with atherogenesis as well as thrombogenesis. Thus, AAA disturbed hemodynamics may be a contributing factor to AAA growth by accelerating the degeneration of the arterial wall. Our investigation also concluded that vortex development is considerably weaker in an asymmetric AAA. Furthermore, turbulence was not observed in the asymmetric model. Finally, our investigation suggests a new mode of transition to turbulence: vortex ring instability and bursting to turbulence. The transition process depends on a combination of the pulsatile flow conditions and the tube cross-sectional area change.


Assuntos
Aneurisma da Aorta Abdominal/fisiopatologia , Modelos Cardiovasculares , Aneurisma da Aorta Abdominal/etiologia , Fenômenos Biomecânicos , Simulação por Computador , Exercício Físico/fisiologia , Hemodinâmica , Humanos , Fluxo Pulsátil
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...