Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Crit Rev Biomed Eng ; 52(5): 1-16, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884210

RESUMO

The study aims to enhance the standard of medical care for individuals working in the electric power industry who are exposed to industrial frequency electromagnetic fields and other relevant risk factors. This enhancement is sought through the integration of fuzzy mathematical models with contemporary information and intellectual technologies. The study addresses the challenges of forecasting and diagnosing illnesses within a specific demographic characterized by a combination of poorly formalized issues with interconnected conditions. To tackle this complexity, a methodological framework was developed for synthesizing hybrid fuzzy decision rules. This approach combines clinical expertise with artificial intelligence methodologies to promote innovative problem-solving strategies. Additionally, the researchers devised an original method to evaluate the body's protective capacity, which was integrated into these decision rules to enhance the precision and efficacy of medical decision-making processes. The research findings indicate that industrial frequency electromagnetic fields contribute to illnesses of societal significance. Additionally, it highlights that these effects are worsened by other risk factors such as adverse microclimates, noise, vibration, chemical exposure, and psychological stress. Diseases of the neurological, immunological, cardiovascular, genitourinary, respiratory, and digestive systems are caused by these variables in conjunction with unique physical traits. The development of mathematical models in this study makes it possible to detect and diagnose disorders in workers exposed to electromagnetic fields early on, especially those pertaining to the autonomic nervous system and heart rhythm regulation. The results can be used in clinical practice to treat personnel in the electric power industry since expert evaluation and modeling showed high confidence levels in decision-making accuracy.


Assuntos
Campos Eletromagnéticos , Lógica Fuzzy , Doenças do Sistema Nervoso , Humanos , Campos Eletromagnéticos/efeitos adversos , Doenças do Sistema Nervoso/diagnóstico , Doenças do Sistema Nervoso/etiologia , Bioengenharia , Exposição Ocupacional/efeitos adversos
2.
Comput Methods Biomech Biomed Engin ; 26(12): 1400-1418, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36305552

RESUMO

Currently, intelligent systems built on a multimodal basis are used to study the functional state of living objects. Its essence lies in the fact that a decision is made through several independent information channels with the subsequent aggregation of these decisions. The method of forming descriptors for classifiers of the functional state of the respiratory system includes the study of the spectral range of the respiratory rhythm and the construction of the wavelet plane of the monitoring electrocardiosignal overlapping this range. Then, variations in the breathing rhythm are determined along the corresponding lines of the wavelet plane. Its analysis makes it possible to select slow waves corresponding to the breathing rhythm and systemic waves of the second order. Analysis of the spectral characteristics of these waves makes it possible to form a space of informative features for classifiers of the functional state of the respiratory system. To construct classifiers of the functional state of the respiratory system, hierarchical classifiers were used. As an example, we took a group of patients with pneumonia with a well-defined diagnosis (radiography, X-ray tomography, laboratory data) and a group of volunteers without pulmonary pathology. The diagnostic sensitivity of the obtained classifier was 76% specificity with a diagnostic specificity of 82%, which is comparable to the results of X-ray studies. It is shown that the corresponding lines of the wavelet planes are correlated with the respiratory system and, using their Fourier analysis, descriptors can be obtained for training neural network classifiers of the functional state of the respiratory system.


Assuntos
Redes Neurais de Computação , Sistema Respiratório , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...