Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(21)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37958586

RESUMO

Raman spectroscopy is a widely developing approach for noninvasive analysis that can provide information on chemical composition and molecular structure. High chemical specificity calls for developing different medical diagnostic applications based on Raman spectroscopy. This review focuses on the Raman-based techniques used in medical diagnostics and provides an overview of such techniques, possible areas of their application, and current limitations. We have reviewed recent studies proposing conventional Raman spectroscopy and surface-enhanced Raman spectroscopy for rapid measuring of specific biomarkers of such diseases as cardiovascular disease, cancer, neurogenerative disease, and coronavirus disease (COVID-19). As a result, we have discovered several most promising Raman-based applications to identify affected persons by detecting some significant spectral features. We have analyzed these approaches in terms of their potentially diagnostic power and highlighted the remaining challenges and limitations preventing their translation into clinical settings.


Assuntos
Doenças Cardiovasculares , Neoplasias , Humanos , Biomarcadores , Neoplasias/diagnóstico , Análise Espectral Raman/métodos , Doenças Cardiovasculares/diagnóstico
2.
J Biophotonics ; 16(7): e202300016, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36999197

RESUMO

This work aims at studying Raman spectroscopy in combination with chemometrics as an alternative fast noninvasive method to detect chronic heart failure (CHF) cases. Optical analysis is focused on the changes in the spectral features associated with the biochemical composition changes of skin tissues. A portable spectroscopy setup with the 785 nm excitation wavelength was used to record skin Raman features. In this in vivo study, 127 patients and 57 healthy volunteers were involved in measuring skin spectral features by Raman spectroscopy. The spectral data were analyzed with a projection on the latent structures and discriminant analysis. 202 skin spectra of patients with CHF and 90 skin spectra of healthy volunteers were classified with 0.888 ROC AUC for the 10-fold cross validated algorithm. To identify CHF cases, the performance of the proposed classifier was verified by means of a new test set that is equal to 0.917 ROC AUC.


Assuntos
Insuficiência Cardíaca , Neoplasias Cutâneas , Humanos , Análise Espectral Raman/métodos , Pele , Neoplasias Cutâneas/diagnóstico , Análise Discriminante , Insuficiência Cardíaca/diagnóstico por imagem
3.
Sensors (Basel) ; 22(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36559957

RESUMO

In recent years, Raman spectroscopy has been used to study biological tissues. However, the analysis of experimental Raman spectra is still challenging, since the Raman spectra of most biological tissue components overlap significantly and it is difficult to separate individual components. New methods of analysis are needed that would allow for the decomposition of Raman spectra into components and the evaluation of their contribution. The aim of our work is to study the possibilities of the multivariate curve resolution alternating least squares (MCR-ALS) method for the analysis of skin tissues in vivo. We investigated the Raman spectra of human skin recorded using a portable conventional Raman spectroscopy setup. The MCR-ALS analysis was performed for the Raman spectra of normal skin, keratosis, basal cell carcinoma, malignant melanoma, and pigmented nevus. We obtained spectral profiles corresponding to the contribution of the optical system and skin components: melanin, proteins, lipids, water, etc. The obtained results show that the multivariate curve resolution alternating least squares analysis can provide new information on the biochemical profiles of skin tissues. Such information may be used in medical diagnostics to analyze Raman spectra with a low signal-to-noise ratio, as well as in various fields of science and industry for preprocessing Raman spectra to remove parasitic components.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Análise dos Mínimos Quadrados , Neoplasias Cutâneas/diagnóstico , Pele/química , Análise Multivariada , Análise Espectral Raman/métodos
4.
Diagnostics (Basel) ; 12(10)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36292192

RESUMO

In this study, patient data were combined with Raman and autofluorescence spectral parameters for more accurate identification of skin tumors. The spectral and patient data of skin tumors were classified by projection on latent structures and discriminant analysis. The importance of patient risk factors was determined using statistical improvement of ROC AUCs when spectral parameters were combined with risk factors. Gender, age and tumor localization were found significant for classification of malignant versus benign neoplasms, resulting in improvement of ROC AUCs from 0.610 to 0.818 (p < 0.05). To distinguish melanoma versus pigmented skin tumors, the same factors significantly improved ROC AUCs from 0.709 to 0.810 (p < 0.05) when analyzed together according to the spectral data, but insignificantly (p > 0.05) when analyzed individually. For classification of melanoma versus seborrheic keratosis, no statistical improvement of ROC AUC was observed when the patient data were added to the spectral data. In all three classification models, additional risk factors such as occupational hazards, family history, sun exposure, size, and personal history did not statistically improve the ROC AUCs. In summary, combined analysis of spectral and patient data can be significant for certain diagnostic tasks: patient data demonstrated the distribution of skin tumor incidence in different demographic groups, whereas tumors within each group were distinguished using the spectral differences.

5.
Comput Methods Programs Biomed ; 219: 106755, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35349907

RESUMO

BACKGROUND AND OBJECTIVE: Skin cancer is the most common malignancy in whites accounting for about one third of all cancers diagnosed per year. Portable Raman spectroscopy setups for skin cancer "optical biopsy" are utilized to detect tumors based on their spectral features caused by the comparative presence of different chemical components. However, low signal-to-noise ratio in such systems may prevent accurate tumors classification. Thus, there is a challenge to develop methods for efficient skin tumors classification. METHODS: We compare the performance of convolutional neural networks and the projection on latent structures with discriminant analysis for discriminating skin cancer using the analysis of Raman spectra with a high autofluorescence background stimulated by a 785 nm laser. We have registered the spectra of 617 cases of skin neoplasms (615 patients, 70 melanomas, 122 basal cell carcinomas, 12 squamous cell carcinomas and 413 benign tumors) in vivo with a portable Raman setup and created classification models both for convolutional neural networks and projection on latent structures approaches. To check the classification models stability, a 10-fold cross-validation was performed for all created models. To avoid models overfitting, the data was divided into a training set (80% of spectral dataset) and a test set (20% of spectral dataset). RESULTS: The results for different classification tasks demonstrate that the convolutional neural networks significantly (p<0.01) outperforms the projection on latent structures. For the convolutional neural networks implementation we obtained ROC AUCs of 0.96 (0.94 - 0.97; 95% CI), 0.90 (0.85-0.94; 95% CI), and 0.92 (0.87 - 0.97; 95% CI) for classifying a) malignant vs benign tumors, b) melanomas vs pigmented tumors and c) melanomas vs seborrheic keratosis respectively. CONCLUSIONS: The performance of the convolutional neural networks classification of skin tumors based on Raman spectra analysis is higher or comparable to the accuracy provided by trained dermatologists. The increased accuracy with the convolutional neural networks implementation is due to a more precise accounting of low intensity Raman bands in the intense autofluorescence background. The achieved high performance of skin tumors classifications with convolutional neural networks analysis opens a possibility for wide implementation of Raman setups in clinical setting.


Assuntos
Carcinoma Basocelular , Ceratose Seborreica , Melanoma , Neoplasias Cutâneas , Carcinoma Basocelular/diagnóstico , Humanos , Ceratose Seborreica/diagnóstico , Melanoma/diagnóstico , Melanoma/patologia , Redes Neurais de Computação , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/patologia
6.
Photodiagnosis Photodyn Ther ; 35: 102351, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34048968

RESUMO

Dermatofibrosarcoma protuberans is a rare disease and this pathology provokes insufficient oncological alertness among clinicians. A possible way to increase the accuracy of early diagnosis of rare skin neoplasms is "optical biopsy" using Raman spectroscopy tissue response. This case report of a 32-year-old woman with a dermatofibrosarcoma protuberans demonstrates that Raman spectroscopy based "optical biopsy" can help to diagnose rare tumors.


Assuntos
Dermatofibrossarcoma , Fotoquimioterapia , Neoplasias Cutâneas , Adulto , Dermatofibrossarcoma/diagnóstico , Feminino , Humanos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes , Neoplasias Cutâneas/diagnóstico , Análise Espectral Raman
7.
Exp Dermatol ; 30(5): 652-663, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33566431

RESUMO

In this study, we performed in vivo diagnosis of skin cancer based on implementation of a portable low-cost spectroscopy setup combining analysis of Raman and autofluorescence spectra in the near-infrared region (800-915 nm). We studied 617 cases of skin neoplasms (615 patients, 70 melanomas, 122 basal cell carcinomas, 12 squamous cell carcinomas and 413 benign tumors) in vivo with a portable setup. The studies considered the patients examined by GPs in local clinics and directed to a specialized Oncology Dispensary with suspected skin cancer. Each sample was histologically examined after excisional biopsy. The spectra were classified with a projection on latent structures and discriminant analysis. To check the classification models stability, a 10-fold cross-validation was performed. We obtained ROC AUCs of 0.75 (0.71-0.79; 95% CI), 0.69 (0.63-0.76; 95% CI) and 0.81 (0.74-0.87; 95% CI) for classification of a) malignant and benign tumors, b) melanomas and pigmented tumors and c) melanomas and seborrhoeic keratosis, respectively. The positive and negative predictive values ranged from 20% to 52% and from 73% to 99%, respectively. The biopsy ratio varied from 0.92:1 to 4.08:1 (at sensitivity levels from 90% to 99%). The accuracy of automatic analysis with the proposed system is higher than the accuracy of GPs and trainees, and is comparable or less to the accuracy of trained dermatologists. The proposed approach may be combined with other optical techniques of skin lesion analysis, such as dermoscopy- and spectroscopy-based computer-assisted diagnosis systems to increase accuracy of neoplasms classification.


Assuntos
Carcinoma Basocelular/diagnóstico , Carcinoma de Células Escamosas/diagnóstico , Melanoma/diagnóstico , Processamento de Sinais Assistido por Computador/instrumentação , Neoplasias Cutâneas/diagnóstico , Análise Espectral Raman/métodos , Diagnóstico Diferencial , Humanos , Sensibilidade e Especificidade , Análise Espectral Raman/instrumentação
8.
J Biophotonics ; 14(2): e202000360, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33131189

RESUMO

The object of this paper is in vivo study of skin spectral-characteristics in patients with kidney failure by conventional Raman spectroscopy in near infrared region. The experimental dataset was subjected to discriminant analysis with the projection on latent structures (PLS-DA). Application of Raman spectroscopy to investigate the forearm skin in 85 adult patients with kidney failure (90 spectra) and 40 healthy adult volunteers (80 spectra) has yielded the accuracy of 0.96, sensitivity of 0.94 and specificity of 0.99 in terms of identifying the target subjects with kidney failure. The autofluorescence analysis in the near infrared region identified the patients with kidney failure among healthy volunteers of the same age group with specificity, sensitivity, and accuracy of 0.91, 0.84, and 0.88, respectively. When classifying subjects by the presence of kidney failure using the PLS-DA method, the most informative Raman spectral bands are 1315 to 1330, 1450 to 1460, 1700 to 1800 cm-1 . In general, the performed study demonstrates that for in vivo skin analysis, the conventional Raman spectroscopy can provide the basis for cost-effective and accurate detection of kidney failure and associated metabolic changes in the skin.


Assuntos
Insuficiência Renal , Análise Espectral Raman , Adulto , Análise Discriminante , Humanos , Espectroscopia de Luz Próxima ao Infravermelho
10.
Biomed Opt Express ; 10(9): 4489-4491, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31565504

RESUMO

This paper comments on the article "Use of Raman spectroscopy to screen diabetes mellitus with machine learning tools" by E. Guevara et al. The authors propose an optical method for noninvasive automated screening of type 2 diabetes mellitus. Despite the high performance of the proposed method, results shown by the authors may be ambiguous due to the overestimation of classification models for Raman spectral data analysis.

11.
J Biophotonics ; 12(4): e201800400, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30597749

RESUMO

The present paper studies the applicability of a portable cost-effective spectroscopic system for the optical screening of skin tumors. in vivo studies of Raman scattering and autofluorescence (AF) of skin tumors with the 785 nm excitation laser in the near-infrared region included malignant melanoma, basal cell carcinoma and various types of benign neoplasms. The efficiency of the portable system was evaluated by comparison with a highly sensitive spectroscopic system and with the diagnosis accuracy of a human oncologist. Partial least square analysis of Raman and AF spectra was performed; specificity and sensitivity of various skin oncological pathologies detection varied from 78.9% to 100%. Hundred percent accuracy of benign and malignant skin tumors differentiation is possible only with a combined analysis of Raman and AF signals.


Assuntos
Neoplasias Cutâneas/diagnóstico , Espectrometria de Fluorescência/instrumentação , Análise Espectral Raman/instrumentação , Feminino , Humanos , Razão Sinal-Ruído , Adulto Jovem
12.
J Biomed Opt ; 22(2): 27005, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28205679

RESUMO

The differentiation of skin melanomas and basal cell carcinomas (BCCs) was demonstrated based on combined analysis of Raman and autofluorescence spectra stimulated by visible and NIR lasers. It was ex vivo tested on 39 melanomas and 40 BCCs. Six spectroscopic criteria utilizing information about alteration of melanin, porphyrins, flavins, lipids, and collagen content in tumor with a comparison to healthy skin were proposed. The measured correlation between the proposed criteria makes it possible to define weakly correlated criteria groups for discriminant analysis and principal components analysis application. It was shown that the accuracy of cancerous tissues classification reaches 97.3% for a combined 6-criteria multimodal algorithm, while the accuracy determined separately for each modality does not exceed 79%. The combined 6-D method is a rapid and reliable tool for malignant skin detection and classification.


Assuntos
Raios Infravermelhos , Luz , Neoplasias Cutâneas/diagnóstico por imagem , Análise Espectral Raman , Carcinoma Basocelular/diagnóstico por imagem , Análise Discriminante , Humanos , Melanoma/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...