Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; 40(10): 4642-4661, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-33317396

RESUMO

Influenza A/H1N1 virus hemagglutinin (HA) is an integral type I glycoprotein that contains a large glycosylated ectodomain, a transmembrane domain, and a cytoplasmic tail (CT) of 10-14 amino acid residues. There are absolutely no data on the secondary or tertiary structure of the HA CT, which is important for virus pathogenesis. Three highly conserved cysteines are post-translationally modified by the attachment of fatty acid residues that pin the CT to the lipid membrane inside the virion. We applied circular dichroism (CD) and fluorescence spectroscopy analysis to examine four synthetic peptides corresponding to 14-15 C-terminal residues of H1 subtype HA (NH2-WMCSNGSLQCRICI-COOH; NH2-FWMCSNGSLQCRICI-COOH), with free or acetaminomethylated cysteines, in the reduced or non-reduced state, at various pH values and temperatures. The CD analysis detected the formation of a ß-structure (30-65% according to the new BeStSel algorithm), in addition to an unstructured random coil, in every peptide in various conditions. It was completely or partially recognized as an antiparallel ß-structure that was also confirmed by the multi-bounce Horizontal Attenuated Total Reflectance Fourier Transformed Infrared (HATR-FTIR) spectroscopy analysis. According to the experimental data, as well as 3 D modeling, we assume that the amino acid sequence corresponding to the HA CT may form a short antiparallel ß-structure under the lipid membrane within a virion.Communicated by Ramaswamy H. Sarma.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vírus da Influenza A Subtipo H1N1 , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Lipídeos , Peptídeos/química
2.
Sci Rep ; 11(1): 1225, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441645

RESUMO

Human parvovirus B19 (B19V) infection is not notifiable in Belarus and its most common clinical presentation erythema infectiosum (EI) is often difficult to distinguish from other exanthematous diseases. The objective of this study was to provide comprehensive data about EI epidemiology in Belarus based on the serological and molecular investigation of samples from measles and rubella discarded cases collected between 2005 and 2019. Overall, 4919 sera were investigated for IgM antibodies against B19V and the positive cases were analysed according to year, season and age. B19V DNA was amplified by PCR in a total of 238 sera from all over the country, and sequenced for phylogenetic analyses. B19V infection was confirmed in 1377 (27.8%) measles and rubella discarded cases. Two high incidence periods and a seasonal increase of EI between mid-February to mid-July were identified. Children from 4 to 6 and from 7 to 10 years of age represented the largest groups of patients (22.51% and 22.66% of all cases, respectively), followed by adults between 20 and 29 years of age (14.23%). Among the 238 B19Vs sequenced, one belonged to subgenotype 3b and 237 to subgenotype 1a with 81 (34.2%) clustering with subtypes 1a1 and 153 (64.6%) with 1a2. Three strains (1.2%) formed an additional, well-supported cluster suggesting the presence of another subtype of 1a, tentatively named 1a3. The epidemiological and molecular analyses highlighted not only the prominent role of B19V in exanthematous diseases in Belarus, but also suggested a previously underestimated diversity of subgenotype 1a sequences with a third subtype 1a3.


Assuntos
Infecções por Parvoviridae/virologia , Parvovirus B19 Humano/genética , Adolescente , Adulto , Anticorpos Antivirais/imunologia , Criança , Pré-Escolar , DNA Viral/genética , Feminino , Genótipo , Humanos , Imunoglobulina M/imunologia , Lactente , Masculino , Pessoa de Meia-Idade , Infecções por Parvoviridae/imunologia , Parvovirus B19 Humano/imunologia , Filogenia , República de Belarus , Análise de Sequência de DNA/métodos , Adulto Jovem
3.
Protein Pept Lett ; 28(5): 573-588, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33172366

RESUMO

AIMS: The aim of this study was to create a new version of the PentaFOLD algorithm and to test its performance experimentally in several proteins and peptides. BACKGROUND: Synthetic vaccines can cause production of neutralizing antibodies only in case if short peptides form the same secondary structure as fragments of full-length proteins. The Penta- FOLD 3.0 algorithm was designed to check stability of alpha helices, beta strands, and random coils using several propensity scales obtained during analysis of 1730 3D structures of proteins. OBJECTIVE: The algorithm has been tested in the three peptides known to keep the secondary structure of the corresponding fragments of full-length proteins: the NY25 peptide from the Influenza H1N1 hemagglutinin, the SF23 peptide from the diphtheria toxin, the NQ21 peptide from the HIV1 gp120; as well as in the CC36 peptide from the human major prion protein. METHODS: Affine chromatography for antibodies against peptides accompanied by circular dichroism and fluorescence spectroscopy were used to check the predictions of the algorithm. RESULTS: Immunological experiments showed that all abovementioned peptides are more or less immunogenic in rabbits. The fact that antibodies against the NY25, the SF23, and the NQ21 form stable complexes with corresponding full-length proteins has been confirmed by affine chromatography. The surface of SARS CoV-2 spike receptor-binding domain interacting with hACE2 has been shown to be unstable according to the results of the PentaFOLD 3.0. CONCLUSION: The PentaFOLD 3.0 algorithm (http://chemres.bsmu.by/PentaFOLD30.htm) can be used with the aim to design vaccine peptides with stable secondary structure elements.


Assuntos
Algoritmos , Peptídeos/química , Proteínas/química , Vacinas de Subunidades Antigênicas/química , Vacinas Sintéticas/química , Toxina Diftérica/química , Proteína gp120 do Envelope de HIV/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Humanos , Vírus da Influenza A Subtipo H1N1/química , Modelos Moleculares , Príons/química , Conformação Proteica , Estrutura Secundária de Proteína , Software , Glicoproteína da Espícula de Coronavírus/química
4.
Microsc Microanal ; 26(2): 297-309, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32036809

RESUMO

Influenza A virus is a serious human pathogen that assembles enveloped virions on the plasma membrane of the host cell. The pleiomorphic morphology of influenza A virus, represented by spherical, elongated, or filamentous particles, is important for the spread of the virus in nature. Using fixative protocols for sample preparation and negative staining electron microscopy, we found that the recombinant A/WSN/33 (H1N1) (rWSN) virus, a strain considered to be strictly spherical, may produce filamentous particles when amplified in the allantoic cavity of chicken embryos. In contrast, the laboratory WSN strain and the rWSN virus amplified in Madin-Darby canine kidney cells exhibited a spherical morphology. Next-generation sequencing (NGS) suggested a rare Ser126Cys substitution in the M1 protein of rWSN, which was confirmed by the mass spectrometric analysis. No structurally relevant substitutions were found by NGS in other proteins of rWSN. Bioinformatics algorithms predicted a neutral structural effect of the Ser126Cys mutation. The mrWSN_M1_126S virus generated after the introduction of the reverse Cys126Ser substitution exhibited a similar host-dependent partially filamentous phenotype. We hypothesize that a shortage of some as-yet-undefined cellular components involved in virion budding and membrane scission may result in the appearance of filamentous particles in the case of usually "nonfilamentous" virus strains.


Assuntos
Vírus da Influenza A Subtipo H1N1/genética , Proteínas Virais/química , Proteínas Virais/genética , Animais , Linhagem Celular , Galinhas , Biologia Computacional , Cães , Células HEK293 , Humanos , Vírus da Influenza A Subtipo H1N1/ultraestrutura , Vírus da Influenza A/genética , Células Madin Darby de Rim Canino , Mutação , Fenótipo , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/genética , Vírion
5.
Protein Pept Lett ; 26(8): 588-600, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31161979

RESUMO

Post-translational modifications often regulate protein functioning. Covalent attachment of long chain fatty acids to cysteine residues via a thioester linkage (known as protein palmitoylation or S-acylation) affects protein trafficking, protein-protein and protein-membrane interactions. This post-translational modification is coupled to membrane fusion or virus assembly and may affect viral replication in vitro and thus also virus pathogenesis in vivo. In this review we outline modern methods to study S-acylation of viral proteins and to characterize palmitoylproteomes of virus infected cells. The palmitoylation site predictor CSS-palm is critically tested against the Class I enveloped virus proteins. We further focus on identifying the S-acylation sites directly within acyl-peptides and the specific fatty acid (e.g, palmitate, stearate) bound to them using MALDI-TOF MS-based approaches. The fatty acid heterogeneity/ selectivity issue attracts now more attention since the recently published 3D-structures of two DHHC-acyl-transferases gave a hint how this might be achieved.


Assuntos
Proteínas do Envelope Viral/metabolismo , Vírus/metabolismo , Acilação , Animais , Biologia Computacional , Bases de Dados de Compostos Químicos , Humanos , Lipoilação , Conformação Proteica , Processamento de Proteína Pós-Traducional , Proteoma , Internalização do Vírus
6.
Artigo em Inglês | MEDLINE | ID: mdl-28275585

RESUMO

Zika virus (ZIKV) spread led to the recent medical health emergency of international concern. Understanding the variations in virus system is of utmost need. Using available complete sequences of ZIKV we estimated directions of mutational pressure along the length of consensus sequences of three lineages of the virus. Results showed that guanine usage is growing in ZIKV RNA plus strand due to adenine to guanine transitions, while adenine usage is growing due to cytosine to adenine transversions. Especially high levels of guanine have been found in two-fold degenerated sites of certain areas of RNA plus strand with high amount of secondary structure. The usage of cytosine in two-fold degenerated sites shows direct dependence on the amount of secondary structure in 52% (consensus sequence of East African ZIKV lineage)-32% (consensus sequence of epidemic strains) of the length of RNA minus strand. These facts are the evidences of ADAR-editing of both strands of ZIKV genome during pauses in replication. RNA plus strand can also be edited by ADAR during pauses in translation caused by the appearance of groups of rare codons. According to our results, RNA minus strand of epidemic ZIKV strain has lower number of points in which polymerase can be stalled (allowing ADAR-editing) compared to other strains. The data on preferable directions of mutational pressure in epidemic ZIKV strain is useful for future vaccine development and understanding the evolution of new strains.


Assuntos
Mutação , Biossíntese de Proteínas , RNA Viral/metabolismo , Seleção Genética , Replicação Viral , Zika virus/genética , Zika virus/fisiologia , Adenosina Desaminase/metabolismo , Evolução Biológica , Biologia Computacional , Humanos , Conformação de Ácido Nucleico , RNA Viral/genética
7.
Curr Genomics ; 13(1): 55-64, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22942675

RESUMO

In the present review, we summarized current knowledge on replicative strand asymmetries in prokaryotic genomes. A cornerstone for the creation of a theory of their formation has been overviewed. According to our recent works, the probability of nonsense mutation caused by replication-associated mutational pressure is higher for genes from lagging strands than for genes from leading strands of both bacterial and archaeal genomes. Lower density of open reading frames in lagging strands can be explained by faster rates of nonsense mutations in genes situated on them. According to the asymmetries in nucleotide usage in fourfold and twofold degenerate sites, the direction of replication-associated mutational pressure for genes from lagging strands is usually the same as the direction of transcription-associated mutational pressure. It means that lagging strands should accumulate more 8-oxo-G, uracil and 5-formyl-uracil, respectively. In our opinion, consequences of cytosine deamination (C to T transitions) do not lead to the decrease of cytosine usage in genes from lagging strands because of the consequences of thymine oxidation (T to C transitions), while guanine oxidation (causing G to T transversions) makes the main contribution into the decrease of guanine usage in fourfold degenerate sites of genes from lagging strands. Nucleotide usage asymmetries and bias in density of coding regions can be found in archaeal genomes, although, the percent of "inversed" asymmetries is much higher for them than for bacterial genomes. "Homogenized" and "inversed" replicative strand asymmetries in archaeal genomes can be used as retrospective indexes for detection of OriC translocations and large inversions.

8.
J Theor Biol ; 282(1): 71-9, 2011 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-21616083

RESUMO

We analyzed the dependence of the percent of highly immunogenic amino acid residues included in B-cell epitopes of homologous proteins on the GC-content (G+C) of genes coding for them in twenty-seven lineages of proteins (and subsequent genes), which belong to seven Varicello and five Simplex viruses. We found out that proteins encoded by genes of a high GC-content usually contain more targets for humoral immune response than their homologs encoded by GC-poor genes. This tendency is characteristic not only to the lineages of glycoproteins, which are the main targets for humoral immune response against Simplex and Varicello viruses, but also to the lineages of capsid proteins and even "housekeeping" enzymes. The percent of amino acids included in linear B-cell epitopes has been predicted for 324 proteins by BepiPred algorithm (www.cbs.dtu.dk/services/BepiPred), the percent of highly immunogenic amino acids included in discontinuous B-cell epitopes and the percent of exposed amino acid residues have been predicted by Epitopia algorithm (http://epitopia.tau.ac.il/). Immunological consequences of the directional mutational GC-pressure are mostly due to the decrease in the total usage of highly hydrophobic amino acids and due to the increase in proline and glycine levels of usage in proteins. The weaker the negative selection on amino acid substitutions caused by symmetric mutational pressure, the higher the slope of direct dependence of the percent of highly immunogenic amino acids included in B-cell epitopes on G+C.


Assuntos
Aminoácidos/análise , Epitopos/química , Sequência Rica em GC , Proteínas/química
9.
Genomics Proteomics Bioinformatics ; 8(1): 22-32, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20451159

RESUMO

The number of completely sequenced archaeal genomes has been sufficient for a large-scale bioinformatic study. We have conducted analyses for each coding region from 36 archaeal genomes using the original CGS algorithm by calculating the total GC content (G+C), GC content in first, second and third codon positions as well as in fourfold and twofold degenerated sites from third codon positions, levels of arginine codon usage (Arg2: AGA/G; Arg4: CGX), levels of amino acid usage and the entropy of amino acid content distribution. In archaeal genomes with strong GC pressure, arginine is coded preferably by GC-rich Arg4 codons, whereas in most of archaeal genomes with G+C<0.6, arginine is coded preferably by AT-rich Arg2 codons. In the genome of Haloquadratum walsbyi, which is closely related to GC-rich archaea, GC content has decreased mostly in third codon positions, while Arg4>>Arg2 bias still persists. Proteomes of archaeal species carry characteristic amino acid biases: levels of isoleucine and lysine are elevated, while levels of alanine, histidine, glutamine and cytosine are relatively decreased. Numerous genomic and proteomic biases observed can be explained by the hypothesis of previously existed strong mutational AT pressure in the common predecessor of all archaea.


Assuntos
Composição de Bases/genética , Aminoácidos/genética , Archaea/genética , Códon , Genoma , Genoma Arqueal , Mutação , Proteoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...