Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bull Math Biol ; 86(1): 6, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38063898

RESUMO

Epidemic propagation on networks represents an important departure from traditional mass-action models. However, the high-dimensionality of the exact models poses a challenge to both mathematical analysis and parameter inference. By using mean-field models, such as the pairwise model (PWM), the high-dimensionality becomes tractable. While such models have been used extensively for model analysis, there is limited work in the context of statistical inference. In this paper, we explore the extent to which the PWM with the susceptible-infected-recovered (SIR) epidemic can be used to infer disease- and network-related parameters. Data from an epidemics can be loosely categorised as being population level, e.g., daily new cases, or individual level, e.g., recovery times. To understand if and how network inference is influenced by the type of data, we employed the widely-used MLE approach for population-level data and dynamical survival analysis (DSA) for individual-level data. For scenarios in which there is no model mismatch, such as when data are generated via simulations, both methods perform well despite strong dependence between parameters. In contrast, for real-world data, such as foot-and-mouth, H1N1 and COVID19, whereas the DSA method appears fairly robust to potential model mismatch and produces parameter estimates that are epidemiologically plausible, our results with the MLE method revealed several issues pertaining to parameter unidentifiability and a lack of robustness to exact knowledge about key quantities such as population size and/or proportion of under reporting. Taken together, however, our findings suggest that network-based mean-field models can be used to formulate approximate likelihoods which, coupled with an efficient inference scheme, make it possible to not only learn about the parameters of the disease dynamics but also that of the underlying network.


Assuntos
Epidemias , Vírus da Influenza A Subtipo H1N1 , Modelos Biológicos , Conceitos Matemáticos , Probabilidade
2.
Front Public Health ; 11: 1087698, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37064663

RESUMO

Incarcerated individuals are a highly vulnerable population for infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Understanding the transmission of respiratory infections within prisons and between prisons and surrounding communities is a crucial component of pandemic preparedness and response. Here, we use mathematical and statistical models to analyze publicly available data on the spread of SARS-CoV-2 reported by the Ohio Department of Rehabilitation and Corrections (ODRC). Results from mass testing conducted on April 16, 2020 were analyzed together with time of first reported SARS-CoV-2 infection among Marion Correctional Institution (MCI) inmates. Extremely rapid, widespread infection of MCI inmates was reported, with nearly 80% of inmates infected within 3 weeks of the first reported inmate case. The dynamical survival analysis (DSA) framework that we use allows the derivation of explicit likelihoods based on mathematical models of transmission. We find that these data are consistent with three non-exclusive possibilities: (i) a basic reproduction number >14 with a single initially infected inmate, (ii) an initial superspreading event resulting in several hundred initially infected inmates with a reproduction number of approximately three, or (iii) earlier undetected circulation of virus among inmates prior to April. All three scenarios attest to the vulnerabilities of prisoners to COVID-19, and the inability to distinguish among these possibilities highlights the need for improved infection surveillance and reporting in prisons.


Assuntos
COVID-19 , Prisioneiros , Humanos , Prisões , COVID-19/epidemiologia , Ohio/epidemiologia , SARS-CoV-2
3.
Math Biosci Eng ; 20(2): 4103-4127, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36899619

RESUMO

The Dynamical Survival Analysis (DSA) is a framework for modeling epidemics based on mean field dynamics applied to individual (agent) level history of infection and recovery. Recently, the Dynamical Survival Analysis (DSA) method has been shown to be an effective tool in analyzing complex non-Markovian epidemic processes that are otherwise difficult to handle using standard methods. One of the advantages of Dynamical Survival Analysis (DSA) is its representation of typical epidemic data in a simple although not explicit form that involves solutions of certain differential equations. In this work we describe how a complex non-Markovian Dynamical Survival Analysis (DSA) model may be applied to a specific data set with the help of appropriate numerical and statistical schemes. The ideas are illustrated with a data example of the COVID-19 epidemic in Ohio.


Assuntos
COVID-19 , Epidemias , Humanos , Ohio , Probabilidade
4.
J Theor Biol ; 561: 111404, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36627078

RESUMO

As the Coronavirus 2019 disease (COVID-19) started to spread rapidly in the state of Ohio, the Ecology, Epidemiology and Population Health (EEPH) program within the Infectious Diseases Institute (IDI) at The Ohio State University (OSU) took the initiative to offer epidemic modeling and decision analytics support to the Ohio Department of Health (ODH). This paper describes the methodology used by the OSU/IDI response modeling team to predict statewide cases of new infections as well as potential hospital burden in the state. The methodology has two components: (1) A Dynamical Survival Analysis (DSA)-based statistical method to perform parameter inference, statewide prediction and uncertainty quantification. (2) A geographic component that down-projects statewide predicted counts to potential hospital burden across the state. We demonstrate the overall methodology with publicly available data. A Python implementation of the methodology is also made publicly available. This manuscript was submitted as part of a theme issue on "Modelling COVID-19 and Preparedness for Future Pandemics".


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Ohio/epidemiologia , Pandemias , Hospitais
5.
Chaos ; 32(11): 113129, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36456333

RESUMO

We propose an approach to modeling large-scale multi-agent dynamical systems allowing interactions among more than just pairs of agents using the theory of mean field games and the notion of hypergraphons, which are obtained as limits of large hypergraphs. To the best of our knowledge, ours is the first work on mean field games on hypergraphs. Together with an extension to a multi-layer setup, we obtain limiting descriptions for large systems of non-linear, weakly interacting dynamical agents. On the theoretical side, we prove the well-foundedness of the resulting hypergraphon mean field game, showing both existence and approximate Nash properties. On the applied side, we extend numerical and learning algorithms to compute the hypergraphon mean field equilibria. To verify our approach empirically, we consider a social rumor spreading model, where we give agents intrinsic motivation to spread rumors to unaware agents, and an epidemic control problem.

6.
medRxiv ; 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35923319

RESUMO

As the Coronavirus 2019 (COVID-19) disease started to spread rapidly in the state of Ohio, the Ecology, Epidemiology and Population Health (EEPH) program within the Infectious Diseases Institute (IDI) at the Ohio State University (OSU) took the initiative to offer epidemic modeling and decision analytics support to the Ohio Department of Health (ODH). This paper describes the methodology used by the OSU/IDI response modeling team to predict statewide cases of new infections as well as potential hospital burden in the state. The methodology has two components: 1) A Dynamic Survival Analysis (DSA)-based statistical method to perform parameter inference, statewide prediction and uncertainty quantification. 2) A geographic component that down-projects statewide predicted counts to potential hospital burden across the state. We demonstrate the overall methodology with publicly available data. A Python implementation of the methodology has been made available publicly. Highlights: We present a novel statistical approach called Dynamic Survival Analysis (DSA) to model an epidemic curve with incomplete data. The DSA approach is advantageous over standard statistical methods primarily because it does not require prior knowledge of the size of the susceptible population, the overall prevalence of the disease, and also the shape of the epidemic curve.The principal motivation behind the study was to obtain predictions of case counts of COVID-19 and the resulting hospital burden in the state of Ohio during the early phase of the pandemic.The proposed methodology was applied to the COVID-19 incidence data in the state of Ohio to support the Ohio Department of Health (ODH) and the Ohio Hospital Association (OHA) with predictions of hospital burden in each of the Hospital Catchment Areas (HCAs) of the state.

7.
J R Soc Interface ; 19(191): 20220124, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35642427

RESUMO

We present a new method for analysing stochastic epidemic models under minimal assumptions. The method, dubbed dynamic survival analysis (DSA), is based on a simple yet powerful observation, namely that population-level mean-field trajectories described by a system of partial differential equations may also approximate individual-level times of infection and recovery. This idea gives rise to a certain non-Markovian agent-based model and provides an agent-level likelihood function for a random sample of infection and/or recovery times. Extensive numerical analyses on both synthetic and real epidemic data from foot-and-mouth disease in the UK (2001) and COVID-19 in India (2020) show good accuracy and confirm the method's versatility in likelihood-based parameter estimation. The accompanying software package gives prospective users a practical tool for modelling, analysing and interpreting epidemic data with the help of the DSA approach.


Assuntos
COVID-19 , Epidemias , Animais , COVID-19/epidemiologia , Funções Verossimilhança , Estudos Prospectivos , Análise de Sobrevida
8.
Phys Rev E ; 105(4): L042301, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35590665

RESUMO

Interacting particles on graphs are routinely used to study magnetic behavior in physics, disease spread in epidemiology, and opinion dynamics in social sciences. The literature on mean-field approximations of such systems for large graphs typically remains limited to specific dynamics, or assumes cluster-free graphs for which standard approximations based on degrees and pairs are often reasonably accurate. Here, we propose a motif-based mean-field approximation that considers higher-order subgraph structures in large clustered graphs. Numerically, our equations agree with stochastic simulations where existing methods fail.

9.
Open Forum Infect Dis ; 9(5): ofac087, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35493128

RESUMO

Background: Estimating real-world vaccine effectiveness is challenging as a variety of population factors can impact vaccine effectiveness. We aimed to assess the population-level reduction in cumulative severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cases, hospitalizations, and mortality due to the BNT162b2 mRNA coronavirus disease 2019 (COVID-19) vaccination campaign in Israel during January-February 2021. Methods: A susceptible-infected-recovered/removed (SIR) model and a Dynamic Survival Analysis (DSA) statistical approach were used. Daily counts of individuals who tested positive and of vaccine doses administered, obtained from the Israeli Ministry of Health, were used to calibrate the model. The model was parameterized using values derived from a previous phase of the pandemic during which similar lockdown and other preventive measures were implemented in order to take into account the effect of these prevention measures on COVID-19 spread. Results: Our model predicted for the total population a reduction of 648 585 SARS-CoV-2 cases (75% confidence interval [CI], 25 877-1 396 963) during the first 2 months of the vaccination campaign. The number of averted hospitalizations for moderate to severe conditions was 16 101 (75% CI, 2010-33 035), and reduction of death was estimated at 5123 (75% CI, 388-10 815) fatalities. Among children aged 0-19 years, we estimated a reduction of 163 436 (75% CI, 0-433 233) SARS-CoV-2 cases, which we consider to be an indirect effect of the vaccine. Conclusions: Our results suggest that the rapid vaccination campaign prevented hundreds of thousands of new cases as well as thousands of hospitalizations and fatalities and has probably averted a major health care crisis.

11.
Sci Rep ; 12(1): 5534, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35365724

RESUMO

The 2018-2020 Ebola virus disease epidemic in Democratic Republic of the Congo (DRC) resulted in 3481 cases (probable and confirmed) and 2299 deaths. In this paper, we use a novel statistical method to analyze the individual-level incidence and hospitalization data on DRC Ebola victims. Our analysis suggests that an increase in the rate of quarantine and isolation that has shortened the infectiousness period by approximately one day during the epidemic's third and final wave was likely responsible for the eventual containment of the outbreak. The analysis further reveals that the total effective population size or the average number of individuals at risk for the disease exposure in three epidemic waves over the period of 24 months was around 16,000-a much smaller number than previously estimated and likely an evidence of at least partial protection of the population at risk through ring vaccination and contact tracing as well as adherence to strict quarantine and isolation policies.


Assuntos
Ebolavirus , Epidemias , Doença pelo Vírus Ebola , República Democrática do Congo/epidemiologia , Surtos de Doenças/prevenção & controle , Epidemias/prevenção & controle , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/prevenção & controle , Humanos
12.
Math Biosci ; 343: 108677, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34848217

RESUMO

Due to delay in reporting, the daily national and statewide COVID-19 incidence counts are often unreliable and need to be estimated from recent data. This process is known in economics as nowcasting. We describe in this paper a simple random forest statistical model for nowcasting the COVID-19 daily new infection counts based on historic data along with a set of simple covariates, such as the currently reported infection counts, day of the week, and time since first reporting. We apply the model to adjust the daily infection counts in Ohio, and show that the predictions from this simple data-driven method compare favorably both in quality and computational burden to those obtained from the state-of-the-art hierarchical Bayesian model employing a complex statistical algorithm. The interactive notebook for performing nowcasting is available online at https://tinyurl.com/simpleMLnowcasting.


Assuntos
COVID-19 , Teorema de Bayes , Humanos , Incidência , Aprendizado de Máquina , SARS-CoV-2
13.
Phys Biol ; 18(1): 015002, 2021 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-33075757

RESUMO

In many biological systems, chemical reactions or changes in a physical state are assumed to occur instantaneously. For describing the dynamics of those systems, Markov models that require exponentially distributed inter-event times have been used widely. However, some biophysical processes such as gene transcription and translation are known to have a significant gap between the initiation and the completion of the processes, which renders the usual assumption of exponential distribution untenable. In this paper, we consider relaxing this assumption by incorporating age-dependent random time delays (distributed according to a given probability distribution) into the system dynamics. We do so by constructing a measure-valued Markov process on a more abstract state space, which allows us to keep track of the 'ages' of molecules participating in a chemical reaction. We study the large-volume limit of such age-structured systems. We show that, when appropriately scaled, the stochastic system can be approximated by a system of partial differential equations (PDEs) in the large-volume limit, as opposed to ordinary differential equations (ODEs) in the classical theory. We show how the limiting PDE system can be used for the purpose of further model reductions and for devising efficient simulation algorithms. In order to describe the ideas, we use a simple transcription process as a running example. We, however, note that the methods developed in this paper apply to a wide class of biophysical systems.


Assuntos
Biofísica/métodos , Cadeias de Markov , Modelos Biológicos , Algoritmos , Simulação por Computador , Processos Estocásticos
14.
Interface Focus ; 10(1): 20190048, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-31897290

RESUMO

In this paper, we show that solutions to ordinary differential equations describing the large-population limits of Markovian stochastic epidemic models can be interpreted as survival or cumulative hazard functions when analysing data on individuals sampled from the population. We refer to the individual-level survival and hazard functions derived from population-level equations as a survival dynamical system (SDS). To illustrate how population-level dynamics imply probability laws for individual-level infection and recovery times that can be used for statistical inference, we show numerical examples based on synthetic data. In these examples, we show that an SDS analysis compares favourably with a complete-data maximum-likelihood analysis. Finally, we use the SDS approach to analyse data from a 2009 influenza A(H1N1) outbreak at Washington State University.

15.
Bull Math Biol ; 81(5): 1303-1336, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30756234

RESUMO

The paper outlines a general approach to deriving quasi-steady-state approximations (QSSAs) of the stochastic reaction networks describing the Michaelis-Menten enzyme kinetics. In particular, it explains how different sets of assumptions about chemical species abundance and reaction rates lead to the standard QSSA, the total QSSA, and the reverse QSSA. These three QSSAs have been widely studied in the literature in deterministic ordinary differential equation settings, and several sets of conditions for their validity have been proposed. With the help of the multiscaling techniques introduced in Ball et al. (Ann Appl Probab 16(4):1925-1961, 2006), Kang and Kurtz (Ann Appl Probab 23(2):529-583, 2013), it is seen that the conditions for deterministic QSSAs largely agree (with some exceptions) with the ones for stochastic QSSAs in the large-volume limits. The paper also illustrates how the stochastic QSSA approach may be extended to more complex stochastic kinetic networks like, for instance, the enzyme-substrate-inhibitor system.


Assuntos
Enzimas/metabolismo , Modelos Biológicos , Biocatálise , Inibidores Enzimáticos/metabolismo , Cinética , Conceitos Matemáticos , Redes e Vias Metabólicas , Processos Estocásticos , Especificidade por Substrato
16.
Biomath (Sofia) ; 8(2)2019.
Artigo em Inglês | MEDLINE | ID: mdl-33192155

RESUMO

We describe two approaches to modeling data from a small to moderate-sized epidemic outbreak. The first approach is based on a branching process approximation and direct analysis of the transmission network, whereas the second one is based on a survival model derived from the classical SIR equations with no explicit transmission information. We compare these approaches using data from a 2012 outbreak of Ebola virus disease caused by Bundibugyo ebolavirus in city of Isiro, Democratic Republic of the Congo. The branching process model allows for a direct comparison of disease transmission across different environments, such as the general community or the Ebola treatment unit. However, the survival model appears to yield parameter estimates with more accuracy and better precision in some circumstances.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...