Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxics ; 12(4)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38668457

RESUMO

The immobilisation of bacteria on biochar has shown potential for enhanced remediation of petroleum hydrocarbon-contaminated soil. However, there is a lack of knowledge regarding the effect of bacterial immobilisation on biosolids-derived biochar for the remediation of diesel-contaminated soil. This current study aimed to assess the impact of the immobilisation of an autochthonous hydrocarbonoclastic bacteria, Ochrobacterium sp. (BIB) on biosolids-derived biochar for the remediation of diesel-contaminated soil. Additionally, the effect of fertiliser application on the efficacy of the BIB treatment was investigated. Biochar (BC) application alone led to significantly higher hydrocarbon removal than the control treatment at all sampling times (4887-11,589 mg/kg higher). When Ochrobacterium sp. was immobilised on biochar (BIB), the hydrocarbon removal was greater than BC by 5533 mg/kg and 1607 mg/kg at weeks 10 and 22, respectively. However, when BIB was co-applied with fertiliser (BIBF), hydrocarbon removal was lower than BIB alone by 6987-11,767 mg/kg. Quantitative PCR (q-PCR) analysis revealed that the gene related to Ochrobacterium sp. was higher in BIB than in the BC treatment, which likely contributed to higher hydrocarbon removal in the BIB treatment. The results of the q-PCR analysis for the presence of alkB genes and FTIR analysis suggest that the degradation of alkane contributed to hydrocarbon removal. The findings of this study demonstrate that bacterial immobilisation on biosolids-derived biochar is a promising technique for the remediation of diesel-contaminated soil. Future studies should focus on optimising the immobilisation process for enhanced hydrocarbon removal.

2.
Environ Sci Pollut Res Int ; 31(13): 20330-20342, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38372916

RESUMO

Per- and polyfluoroalkyl substances (PFAS) have become a key concern to both environmental and human health due to their extreme persistence in the environment and their ability to bioaccumulate in plants, animals, and humans. In this mesocosm study, Australian PFAS-contaminated soil with a mean total concentration of 8.05 mg/kg and a mean combined PFHxS + PFOS concentration of 7.89 mg/kg was treated with an immobilisation sorbent (RemBind®) at different application rates (0.5, 1, 1.5, 2, 3, 4, and 5% w/w). To assess the efficacy of this immobilisation treatment, PFAS leachability, PFAS plant uptake, and ecotoxicity tests were conducted. Leachability testing was performed according to the Australian Standard Leaching Procedure (ASLP) at pH 5 and 7. A grass species (Dactylis glomerata) was used to measure plant uptake of PFAS from untreated and treated contaminated soil. In addition, the Microtox test was used to assess the associated ecotoxicity. The immobilisation treatment resulted in a significant reduction of 88.5-99.8% in the total PFAS leachability and 88.7-99.8% in the combined PFOS and PFHxS leachability at pH 5. Similarly, significant reductions (5-12-fold) were observed in the plant uptake of total PFAS and combined PFOS and PFHxS in all treated soil samples. In addition, although the Microtox test showed relatively low ecotoxicity in all the experimental samples, including the untreated soil, a significant decrease in the ecotoxicity of treated soil samples was observed. The results from this study highlight that this treatment approach has the potential to reduce both PFAS leachability and plant bioavailability with a relatively low associated ecotoxicity. This is likely to reduce the risk of the transfer of PFAS into higher trophic levels. This immobilisation treatment may, therefore, reduce the risk associated with PFAS-contaminated soils and may be an important remediation tool for managing certain PFAS-contaminated soils.


Assuntos
Fluorocarbonos , Poluentes do Solo , Animais , Humanos , Disponibilidade Biológica , Poluentes do Solo/análise , Austrália , Plantas , Solo/química
3.
Heliyon ; 9(11): e21100, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37920507

RESUMO

The process of breaking down chicken manure through anaerobic digestion is an effective waste management technology. However, chicken manure can be a challenging feedstock, causing ammonia stress and digester instability. This study examined the impacts of adding wood biochar and acid-alkali-treated wood biochar to anaerobically digest chicken manure under conditions of ammonia inhibition. The results highlighted that only the addition of 5 % acid-alkali-treated wood biochar by volume can achieve cumulative methane production close to the typical methane potential range of chicken manure. The treated wood biochar also exhibited highest total ammonia nitrogen removal compared to the Control treatment. Scanning Electron Microscope revealed growing interactions between biochar and methanogens over time. Real-time polymerase chain reaction showed that treated wood biochar produced the highest number of bacterial biomass. In addition, 16S amplicon-based sequencing identified a more robust archaeal community from treated biochar addition. Overall, the acid-alkali treatment of biochar represents an effective method of modifying biochar to improve its performance in anaerobic digestion.

4.
J Environ Manage ; 319: 115634, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35803070

RESUMO

Groundwater pollution poses a serious threat to the main source of clean water globally. Nanoparticles have the potential for remediation of polluted aquifers; however, environmental safety concerns associated with in situ deployments of such technology include potential detrimental effects on microorganisms in terms of toxicity and functional disruptions. In this work, we evaluated a new and ecofriendly approach using carbon dots (CDs) as Fenton-like catalysts to catalyse the degradation of dye-containing groundwater samples. This investigation aimed at evaluating the efficacy of a novel remediation technology in terms of dye degradation and toxicity reduction while assessing its impacts on aquatic microorganisms. Uncontaminated Australian groundwater samples were spiked with methylene blue and incubated in the dark, at 18 °C, under slow agitation, using CDs at 0.5 mg mL-1 and H2O2 at 73.5 mM for 25 h. The dye degradation rate was determined as well as the toxicity of the treated solutions using the Microtox® bioassay. Further, to determine the changes in the groundwater microbial community, 16 S rRNA sequencing was used and evenness and diversity indices were analysed using Pielou's evenness and Simpson index, respectively. This study revealed that dye-containing groundwater were effectively treated by CDs showing a degradation rate of 78-82% and a significant 4-fold reduction in the toxicity. Characterisation of the groundwater microbiota revealed a predominance of at least 60% Proteobacteria phylum in all samples where diversity and evenness were maintained throughout the remediation process. The results showed that CDs could be an efficient approach to treat polluted groundwater and potentially have minimum impact on the environmental microbiome.


Assuntos
Água Subterrânea , Microbiota , Poluentes Químicos da Água , Austrália , Carbono/análise , Peróxido de Hidrogênio/análise , Poluentes Químicos da Água/análise
5.
Front Bioeng Biotechnol ; 8: 602040, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33490051

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are Synthetic Organic Compounds (SOCs) which are of current concern as they are linked to a myriad of adverse health effects in mammals. They can be found in drinking water, rivers, groundwater, wastewater, household dust, and soils. In this review, the current challenge and status of bioremediation of PFAs in soils was examined. While several technologies to remove PFAS from soil have been developed, including adsorption, filtration, thermal treatment, chemical oxidation/reduction and soil washing, these methods are expensive, impractical for in situ treatment, use high pressures and temperatures, with most resulting in toxic waste. Biodegradation has the potential to form the basis of a cost-effective, large scale in situ remediation strategy for PFAS removal from soils. Both fungal and bacterial strains have been isolated that are capable of degrading PFAS; however, to date, information regarding the mechanisms of degradation of PFAS is limited. Through the application of new technologies in microbial ecology, such as stable isotope probing, metagenomics, transcriptomics, and metabolomics there is the potential to examine and identify the biodegradation of PFAS, a process which will underpin the development of any robust PFAS bioremediation technology.

6.
Molecules ; 24(18)2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31546774

RESUMO

Petroleum hydrocarbons represent the most frequent environmental contaminant. The introduction of petroleum hydrocarbons into a pristine environment immediately changes the nature of that environment, resulting in reduced ecosystem functionality. Natural attenuation represents the single, most important biological process which removes petroleum hydrocarbons from the environment. It is a process where microorganisms present at the site degrade the organic contaminants without the input of external bioremediation enhancers (i.e., electron donors, electron acceptors, other microorganisms or nutrients). So successful is this natural attenuation process that in environmental biotechnology, bioremediation has developed steadily over the past 50 years based on this natural biodegradation process. Bioremediation is recognized as the most environmentally friendly remediation approach for the removal of petroleum hydrocarbons from an environment as it does not require intensive chemical, mechanical, and costly interventions. However, it is under-utilized as a commercial remediation strategy due to incomplete hydrocarbon catabolism and lengthy remediation times when compared with rival technologies. This review aims to describe the fate of petroleum hydrocarbons in the environment and discuss their interactions with abiotic and biotic components of the environment under both aerobic and anaerobic conditions. Furthermore, the mechanisms for dealing with petroleum hydrocarbon contamination in the environment will be examined. When petroleum hydrocarbons contaminate land, they start to interact with its surrounding, including physical (dispersion), physiochemical (evaporation, dissolution, sorption), chemical (photo-oxidation, auto-oxidation), and biological (plant and microbial catabolism of hydrocarbons) interactions. As microorganism (including bacteria and fungi) play an important role in the degradation of petroleum hydrocarbons, investigations into the microbial communities within contaminated soils is essential for any bioremediation project. This review highlights the fate of petroleum hydrocarbons in tertial environments, as well as the contributions of different microbial consortia for optimum petroleum hydrocarbon bioremediation potential. The impact of high-throughput metagenomic sequencing in determining the underlying degradation mechanisms is also discussed. This knowledge will aid the development of more efficient, cost-effective commercial bioremediation technologies.


Assuntos
Ecossistema , Hidrocarbonetos/análise , Microbiota , Poluição por Petróleo/análise , Petróleo/análise , Biodegradação Ambiental , Hidrocarbonetos/toxicidade , Microbiota/efeitos dos fármacos
7.
Environ Pollut ; 253: 939-948, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31351302

RESUMO

The continued increase in the global demand for oil, which reached 4,488 Mtoe in 2018, leads to large quantities of petroleum products entering the environment posing serious risks to natural ecosystems if left untreated. In this study, we evaluated the impact of co-contamination with lead on the efficacy of two bioremediation processes, natural attenuation and biostimulation of Total Petroleum Hydrocarbons (TPH) as well as the associated toxicity and the changes in the microbial community in contaminated soils. The biostimulated treatment resulted in 96% and 84% reduction in TPH concentration in a single and a co-contamination scenario, respectively, over 28 weeks of a mesocosm study. This reduction was significantly more in comparison to natural attenuation in a single and a co-contamination scenario, which was 56% and 59% respectively. In contrast, a significantly greater reduction in the associated toxicity of in soils undergoing natural attenuation was evident compared with soils undergoing biostimulation despite the lower TPH degradation when bioassays were applied. The earthworm toxicity test showed a decrease of 72% in the naturally attenuated toxicity versus only 62% in the biostimulated treatment of a single contamination scenario. In a co-contamination scenario, toxicity decreased only 30% and 8% after natural attenuation and biostimulation treatments, respectively. 16s rDNA sequence analysis was used to assess the impact of both the co-contamination and the bioremediation treatment. NGS data revealed major bacterial domination by Nocardioides spp., which reached 40% in week 20 of the natural attenuation treatment. In the biostimulated soil samples, more than 50% of the bacterial community was dominated by Alcanivorax spp. in week 12. The presence of Pb in the natural attenuation treatment resulted in an increased abundance of a few Pb-resistant genera such as Sphingopyxis spp. and Thermomonas spp in addition to Nocardioides spp. In contrast, Pb co-contamination completely shifted the bacterial pattern in the stimulated treatment with Pseudomonas spp. comprising approximately 45% of the bacterial profile in week 12. This study confirms the effectiveness of biostimulation over natural attenuation in remediating TPH and TPH-Pb contaminated soils. In addition, the presence of co-contaminants (e.g. Pb) results in serious impacts on the efficacy of bioremediation of TPH in contaminated soils, which must be considered prior to designing any bioremediation strategy.


Assuntos
Biodegradação Ambiental/efeitos dos fármacos , Chumbo/toxicidade , Microbiologia do Solo , Poluentes do Solo/toxicidade , Bactérias/metabolismo , Ecossistema , Hidrocarbonetos/análise , Petróleo/análise , Petróleo/metabolismo , Pseudomonas/metabolismo , Solo , Poluentes do Solo/análise , Poluentes do Solo/metabolismo
8.
Environ Pollut ; 243(Pt A): 94-102, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30172128

RESUMO

The bioremediation of historic industrial contaminated sites is a complex process. Co-contamination, often with lead which was commonly added to gasoline until 16 years ago is one of the biggest challenges affecting the clean-up of these sites. In this study, the effect of heavy metals, as co-contaminant, together with total petroleum hydrocarbons (TPH) is reported, in terms of remaining soil toxicity and the structure of the microbial communities. Contaminated soil samples from a relatively hot and dry climate in Western Australia were collected (n = 27). Analysis of soils showed the presence of both contaminants, TPHs and heavy metals. The Microtox test confirmed that their co-presence elevated the remaining ecotoxicity. Toxicity was correlated with the presence of lead, zinc and TPH (0.893, 0.599 and 0.488), respectively, assessed using Pearson Correlation coefficient factor. Next Generation Sequencing of soil bacterial 16S rRNA, revealed a lack of dominate genera; however, despite the variation in soil type, a few genera including Azospirillum spp. and Conexibacter were present in most soil samples (85% and 82% of all soils, respectively). Likewise, many genera of hydrocarbon-degrading bacteria were identified in all soil samples. Streptomyces spp. was presented in 93% of the samples with abundance between 7% and 40%. In contrast, Acinetobacter spp. was found in only one sample but was a dominant member of (45%) of the microbial community. In addition, some bacterial genera were correlated to the presence of the heavy metals, such as Geodermatophilus spp., Rhodovibrio spp. and Rubrobacter spp. which were correlated with copper, lead and zinc, respectively. This study concludes that TPH and heavy metal co-contamination significantly elevated the associated toxicity. This is an important consideration when carrying out risk assessment associated with natural attenuation. This study also improves knowledge about the dynamics of microbial communities in mixed contamination scenarios.


Assuntos
Hidrocarbonetos/análise , Metais Pesados/análise , Petróleo/análise , Microbiologia do Solo , Poluentes do Solo/análise , Solo/química , Austrália , Bactérias/crescimento & desenvolvimento , Biodegradação Ambiental , Cobre/análise , Ecotoxicologia , Chumbo/análise , RNA Ribossômico 16S/genética , Austrália Ocidental , Zinco/análise
9.
MethodsX ; 5: 705-709, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29998070

RESUMO

Total Petroleum Hydrocarbons (TPH) represent major environmental contaminants which pose a significant risk to ecosystems and humans heath if left untreated. Bioremediation represents a simple, cheap and environmentally-safe approach to clean up TPH-contaminated sites. Traditional TPH analysis is expensive and time-consuming. Here we assess, for the first time, the potential of RemScan as a fast, accurate and cost-effective portable device to be used as a tool to monitor the bioremediation process. A variety of TPH-contaminated soils were subject to TPH quantitative analysis using RemScan. The TPH values obtained were validated and compared against the results obtained from an accredited external laboratory, which uses Gas Chromatography / Mass Spectrometry (GC/MS) for TPH analysis. •RemScan showed a correlation coefficient (R2) of 0.998 in comparison with the traditional methods, but importantly with a significant reduction in both time and cost.•RemScan was successfully used to measure TPH concentrations in bioremediated, weathered-contaminated and highly contaminated soil samples with TPH concentrations varying from 100 to 100,000 mg kg-1.•The RemScan Laboratory Station was used to minimize the source of errors associated with human manual handling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...