Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 167: 153-162, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34358729

RESUMO

The impacts of high-intensity light (HIL) (4 h) and UV-B radiation (1 h) on the photosynthetic activity, content of photosynthetic and UV-absorbing pigments (UAPs), activity of antioxidant enzymes (ascorbate peroxidase (APX) and guaiacol-dependent peroxidase (GPX)), content of thiobarbituric acid reactive substances (TBARs), expression of some light-regulated genes in 25-day-old wild type (WT) and the cryptochrome 1 (Cry1) hy4 mutant of A. thaliana Col-0 plants grown under blue light (BL) were studied. HIL and UV-B treatments led to decreases in the photosynthetic rate (Pn), photochemical activity of PSII (FV/FM) and PSII performance index (PIABS) of WT and mutant plants grown under high-intensity BL (HBL) and moderate intensity BL (MBL). However, in HBL plants, the decrease in the photosynthetic activity in hy4 plants was significantly greater than that in WT plants. In addition, hy4 HBL plants demonstrated lowered UAP and carotenoid contents as well as lower activity of APX and GPX enzymes. The difference in the decline in the photosynthetic activity of WT and hy4 plants grown at MBL in response to HIL was nonsignificant, while that in response to UV-B was small. We assume that the deficiency in cryptochrome 1 under HIL irradiation disrupts the interaction between HY5 and HFR1 transcription factors and photoreceptors, which affects the transcription of light-induced genes, such as CAB1, PSY and PAL1 linked to carotenoid and flavonoid biosynthesis. It was concluded that PA stress resistance in WT and hy4 plants depends on the light intensity and reduced stress resistance of hy4 at HBL, is likely linked to low UAP and carotenoid contents as well as lowered APX and GPX enzyme activities in hy4 mutants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ascorbato Peroxidases , Peroxidase , Fotossíntese , Antioxidantes , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ascorbato Peroxidases/metabolismo , Regulação da Expressão Gênica de Plantas , Peroxidase/genética , Peroxidase/metabolismo , Espécies Reativas de Oxigênio , Raios Ultravioleta
2.
J Photochem Photobiol B ; 194: 14-20, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30897399

RESUMO

The effect of UV-B irradiation on the photosystem II (PSII) activity, the content of photosynthetic and UV-absorbing pigments (UAPs), activity of antioxidant enzymes such as catalase (CAT) and peroxidase (POD), as well as H2O2 content in 25-day-old wild type (WT) and the cryptochrome 1 (Cry1) mutant hy4 of Arabidopsis thaliana Col-0 plants was studied. In addition, expression of photoreceptor genes Cry1, Cry2 and UVR8, photomorphogenetic gene COP1 and transcription factors genes HY5, HYH, the gene of chlorophyll-binding protein of the PSII CAB1 as well as the flavonoid biosynthesis genes CHS, PAL and thylakoid ascorbate peroxidase gene tAPX was examined. It has been shown that UV-B leads to a decrease in the photochemical activity of PSII (FV/FM) and the PSII performance index (PIABS) of WT plants grown on white (WL) and red (RL) light and also hy4 mutants grown on WL, RL and blue light (BL). In plants grown on BL and WL, the decrease in the PSII photochemical activity was significantly greater in hy4 compared to WT. The PSII of WT plants grown in BL was resistant to UV-B. The UAPs content of hy4 grown on BL and WL was lower than that in WT. The POD and CAT activities of WT grown in BL were significantly higher than in the mutant. In WT and hy4 plants grown in RL, a noticeable difference in these enzymes activity was not found. In both types of plants grown in BL and RL, the expression of photomorphogenetic genes HYH, HY5 markedly increased after UV-B treatment but the expression of the UV-B photoreceptor gene UVR8 was reduced in hy4 grown in BL and RL. It is assumed that reduced resistance of PSII in hy4 plants grown in BL and WL can be associated with low UAPs content as well as lowered POD and CAT activities. In addition, we suggest the lowered expression of UVR8 and COP1 genes caused by Cry1 deficiency leads to a shift of balance of oxidants and antioxidants towards oxidants.


Assuntos
Antioxidantes/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Complexo de Proteína do Fotossistema II/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Raios Ultravioleta , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Relação Dose-Resposta à Radiação , Mutação
3.
J Photochem Photobiol B ; 169: 41-46, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28273503

RESUMO

The photosynthetic responses of 25-day-old Arabidopsis phyA phyB double mutant (DM) compared with the wild type (WT) to UV-B radiation (1Wm-2, 30min) were investigated. UV-B irradiation led to reduction of photosystem 2 (PS-2) activity and the photosynthetic rate. In plants grown under both white and red light (λm - 660nm) the reduction was greater in DM plants compared to the WT. Without UV-B irradiation a decrease in PS-2 activity was observed in DM grown under RL only. It is assumed that the lower content of UV-absorbing pigments and carotenoids observed in DM may be one of the reasons of reduced PS-2 resistance to UV-B. Higher decrease in activities under UV in DM plants grown under RL compared to DM plants grown under white light is likely due to the lack of activity of cryptochromes in plants grown under red light. Rates of post-stress recovery of photosynthetic activity of DM compared with WT plants under white and red light of low intensity were studied. Almost complete recovery of the activity was found which was not observed under dark conditions and in the presence of a protein synthesis inhibitor, chloramphenicol. It is assumed that phytochrome system participates in stress-protective mechanisms of the photosynthetic apparatus to UV-radiation.


Assuntos
Arabidopsis/fisiologia , Complexo de Proteínas do Centro de Reação Fotossintética/efeitos da radiação , Fitocromo A/deficiência , Fitocromo B/deficiência , Raios Ultravioleta , Criptocromos , Luz , Mutação , Fotossíntese/efeitos da radiação , Complexo de Proteína do Fotossistema II/efeitos da radiação , Fitocromo A/genética , Fitocromo B/genética
4.
Protoplasma ; 254(3): 1283-1293, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27586644

RESUMO

The reduced content of photoreceptors, such as phytochromes, can decrease the efficiency of photosynthesis and activity of the photosystem II (PSII). For the confirmation of this hypothesis, the effect of deficiency in both phytochromes (Phy) A and B (double mutant, DM) in 7-27-day-old Arabidopsis thaliana plants on the photosynthetic activity was studied in absence and presence of UV-A radiation as a stress factor. The DM with reduced content of apoproteins of PhyA and PhyB and wild type (WT) plants with were grown in white and red light (WL and RL, respectively) of high (130 µmol quanta m-2 s-1) and low (40 µmol quanta m-2 s-1) intensity. For DM and WT grown in WL, no notable difference in the photochemical activity of PSII was observed. However, the resistance of the photosynthetic apparatus (PA) to UV-A and the rate of photosynthesis under light saturation were lower in the DM compared to those in the WT. Growth in RL, when the photoreceptors of blue light-cryptochromes-are inactive, resulted in the significant decrease of the photochemical activity of PSII in DM compared to that in WT including amounts of QB-non-reducing complexes of PSII and noticeable enhancement of thermal dissipation of absorbed light energy. In addition, marked distortion of the thylakoid membrane structure was observed for DM grown in RL. It is suggested that not only PhyA and PhyB but also cryptochromes are necessary for normal functioning of the PA and formation of the mechanisms of its resistance to UV-radiation.


Assuntos
Arabidopsis/metabolismo , Cloroplastos/metabolismo , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/metabolismo , Fitocromo A/deficiência , Fitocromo B/deficiência , Arabidopsis/genética , Cloroplastos/ultraestrutura , Criptocromos/metabolismo , Luz , Processos Fotoquímicos , Fotorreceptores de Plantas/metabolismo , Fitocromo A/genética , Fitocromo B/genética , Folhas de Planta/metabolismo , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...