Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Steroid Biochem Mol Biol ; 118(3): 171-6, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-20026270

RESUMO

Aspergillus tamarii contains an endogenous lactonization pathway which can transform progesterone to testololactone in high yield through a sequential four step enzymatic pathway. In this pathway testosterone is formed which primarily undergoes oxidation of the C-17beta-alcohol to a C-17 ketone but, can also enter a minor hydroxylation pathway where 11beta-hydroxytestosterone is produced. It was recently demonstrated that this hydroxylase could monohydroxylate 3beta-hydroxy substituted saturated steroidal lactones in all four possible binding orientations (normal, reverse, inverted normal, inverted reverse) on rings B and C of the steroid nucleus. It was therefore of interest to determine the fate of a series of 3alpha-substituted steroidal analogues to determine stereochemical effect on transformation. Hydroxylation on the central rings was found to be restricted to the 11beta-position (normal binding), indicating that the 3alpha-stereochemistry removes freedom of binding orientation within the hydroxylase. The only other hydroxylation observed was at the 1beta-position. Interestingly the presence of this functional group did not prevent lactonization of the C-17 ketone. In contrast the presence of the 11beta-hydroxyl completely inhibited Baeyer-Villiger oxidation, a result which again demonstrates that single functional groups can exert significant control over metabolic handling of steroids in this organism. This may also explain why lactonization of 11beta-hydroxytestosterone does not occur. Lactonization of the C-17 ketone was not significantly affected by the 3alpha-alcohol with significant yields achieved (53%). Interestingly a time course experiment demonstrated that the presence of the 3alpha-acetate inhibited the Baeyer-Villiger monooxygenase with its activity being observed 24h later than non-acetate containing analogues. Apart from oxidative transformations observed a minor reductive pathway was revealed with the C-17 ketone being reduced to a C-17beta-alcohol for the first time in this organism.


Assuntos
Androstanóis/metabolismo , Aspergillus/enzimologia , Biocatálise , Androstanóis/análise , Biotransformação/fisiologia , Hidroxilação , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Oxirredução , Espectrofotometria Infravermelho , Estereoisomerismo , Esteroide 11-beta-Hidroxilase/metabolismo , Esteroide Hidroxilases/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...