Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 22598, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38114514

RESUMO

A poor outcome for cholangiocarcinoma (CCA) patients is still a clinical challenge. CCA is typically recognized by the desmoplastic nature, which accounts for its malignancy. Among various extracellular matrix proteins, laminin is the most potent inducer for CCA migration. Herein, we accessed the expression profiles of laminin gene family and explored the significance of the key laminin subunit on CCA aggressiveness. Of all 11 laminin genes, LAMA3, LAMA5, LAMB3 and LAMC2 were concordantly upregulated based on the analysis of multiple public transcriptomic datasets and also overexpressed in Thai CCA cell lines and patient tissues in which LAMA3A upregulated in the highest frequency (97%) of the cases. Differential expression genes (DEGs) analysis of low and high laminin signature groups revealed LAMA3 as the sole common DEG in all investigated datasets. Restratifying CCA samples according to LAMA3 expression indicated the association of LAMA3 in the focal adhesion pathway. Silencing LAMA3 revealed that it plays important roles in CCA cell proliferation, adhesion, migration and epithelial-to-mesenchymal transition. Taken together, this research signifies the roles of dysregulated ECM homeostasis in CCA malignancy and highlights, for the first time, the potential usage of LAMA3 as the diagnostic biomarker and the therapeutic target to tackle the CCA stromal.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Moléculas de Adesão Celular/metabolismo , Laminina/metabolismo , Colangiocarcinoma/patologia , Proliferação de Células/genética , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica
2.
Viruses ; 15(10)2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37896789

RESUMO

Every year, dengue virus (DENV) affects millions of people. Currently, there are no approved drugs for the treatment of DENV infection. Autophagy is a conserved degradation process that was shown to be induced by DENV infection and required for optimal DENV replication. The modulation of autophagy is, therefore, considered an attractive target to treat DENV infection. This study carried out a high-content image screen analysis using Crispr-Cas9 GFP-LC3 knocked-in HeLa cells of a compound library synthesized from or inspired by natural products and their biocongener precursors to discover novel autophagy inhibitors. The screen identified Ka-003 as the most effective compound for decreasing the number of autophagic vacuoles inside cells upon autophagy induction. Ka-003 could inhibit autophagy in a dose-dependent manner at low micromolar concentrations. More importantly, Ka-003 demonstrated the concentration-dependent inhibition of DENV production in Crispr-Cas9 GFP-LC3 knocked-in THP-1 monocytes. The core structure of Ka-003, which is a methyl cyclohexene derivative, resembles those found in mulberry plants, and could be synthetically prepared in a bioinspired fashion. Taken together, data indicate that Ka-003 hampered autophagy and limited DENV replication. The low cytotoxicity of Ka-003 suggests its therapeutic potential, which warrants further studies for the lead optimization of the compound for dengue treatment.


Assuntos
Vírus da Dengue , Dengue , Humanos , Vírus da Dengue/fisiologia , Células HeLa , Autofagia/fisiologia , Replicação Viral
3.
Sci Rep ; 13(1): 1663, 2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36717601

RESUMO

Autophagy induction by starvation has been shown to enhance lysosomal delivery to mycobacterial phagosomes, resulting in the restriction of the Mycobacterium tuberculosis reference strain H37Rv. In contrast to H37Rv, our previous study showed that strains belonging to the notorious M. tuberculosis Beijing genotype could evade autophagic elimination. Our recent RNA-Seq analysis also discovered that the autophagy-resistant M. tuberculosis Beijing strain (BJN) evaded autophagic control by upregulating the expression of Kxd1, a BORC complex component, and Plekhm2, both of which function in lysosome positioning towards the cell periphery in host macrophages, thereby suppressing enhanced lysosomal delivery to its phagosome and sparing the BJN from elimination as a result. In this work, we further characterised the other specific components of the BORC complex, BORC5-8, and Kinesin proteins in autophagy resistance by the BJN. Depletion of BORCS5-8 and Kinesin-1, but not Kinesin-3, reverted autophagy avoidance by the BJN, resulting in increased lysosomal delivery to the BJN phagosomes. In addition, the augmented lysosome relocation towards the perinuclear region could now be observed in the BJN-infected host cells depleted in BORCS5-8 and Kinesin-1 expressions. Taken together, the data uncovered new roles for BORCS5-8 and Kinesin-1 in autophagy evasion by the BJN.


Assuntos
Autofagia , Cinesinas , Mycobacterium tuberculosis , Tuberculose , Humanos , Autofagia/genética , Autofagia/imunologia , Pequim , Proteínas de Transporte/genética , Proteínas de Transporte/imunologia , Cinesinas/genética , Cinesinas/imunologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/imunologia , Tuberculose/genética , Tuberculose/imunologia , Macrófagos/imunologia
4.
Virulence ; 13(1): 1810-1826, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36242542

RESUMO

The upsurge of multidrug-resistant infections has rendered tuberculosis the principal cause of death among infectious diseases. A clonal outbreak multidrug-resistant triggering strain of Mycobacterium tuberculosis was identified in Kanchanaburi Province, labelled "MKR superspreader," which was found to subsequently spread to other regions, as revealed by prior epidemiological reports in Thailand. Herein, we showed that the MKR displayed a higher growth rate upon infection into host macrophages in comparison with the H37Rv reference strain. To further elucidate MKR's biology, we utilized RNA-Seq and differential gene expression analyses to identify host factors involved in the intracellular viability of the MKR. A set of host genes function in the cellular response to lipid pathway was found to be uniquely up-regulated in host macrophages infected with the MKR, but not those infected with H37Rv. Within this set of genes, the IL-36 cytokines which regulate host cell cholesterol metabolism and resistance against mycobacteria attracted our interest, as our previous study revealed that the MKR elevated genes associated with cholesterol breakdown during its growth inside host macrophages. Indeed, when comparing macrophages infected with the MKR to H37Rv-infected cells, our RNA-Seq data showed that the expression ratio of IL-36RN, the negative regulator of the IL-36 pathway, to that of IL-36G was greater in macrophages infected with the MKR. Furthermore, the MKR's intracellular survival and increased intracellular cholesterol level in the MKR-infected macrophages were diminished with decreased IL-36RN expression. Overall, our results indicated that IL-36RN could serve as a new target against this emerging multidrug-resistant M. tuberculosis strain.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Pequim , Colesterol , Citocinas/genética , Surtos de Doenças , Humanos , Lipídeos , Mycobacterium tuberculosis/genética , Tailândia , Transcriptoma , Tuberculose/microbiologia , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia
5.
Pathog Dis ; 80(1)2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35038342

RESUMO

Mycobacterium tuberculosis utilizes several mechanisms to block phagosome-lysosome fusion to evade host cell restriction. However, induction of host cell autophagy by starvation was shown to overcome this block, resulting in enhanced lysosomal delivery to mycobacterial phagosomes and the killing of the M. tuberculosis reference strain H37Rv. Nevertheless, our previous studies found that strains belonging to the M. tuberculosis Beijing genotype can resist starvation-induced autophagic elimination, though the mycobacterial factors involved remain unclear. In this study, we showed that KatG expression is upregulated in the autophagy-resistant M. tuberculosis Beijing strain (BJN) during autophagy induction by the starvation of host macrophages, while such increase was not observed in the H37Rv. KatG depletion using the CRISPR-dCas9 interference system in the BJN resulted in increased lysosomal delivery to its phagosome and decreased its survival upon autophagy induction by starvation. As KatG functions by catabolizing ROS, we determined the source of ROS contributing to the starvation-induced autophagic elimination of mycobacteria. Using siRNA-mediated knockdown, we found that Superoxide dismutase 2, which generates mitochondrial ROS but not NADPH oxidase 2, is important for the starvation-induced lysosomal delivery to mycobacterial phagosomes. Taken together, these findings showed that KatG is vital for the BJN to evade starvation-induced autophagic restriction.


Assuntos
Mycobacterium tuberculosis , Autofagia/genética , Pequim , Lisossomos/microbiologia , Mycobacterium tuberculosis/genética , Fagossomos/metabolismo
6.
Sci Rep ; 11(1): 3199, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33542438

RESUMO

Tuberculosis is a global public health problem with emergence of multidrug-resistant infections. Previous epidemiological studies of tuberculosis in Thailand have identified a clonal outbreak multidrug-resistant strain of Mycobacterium tuberculosis in the Kanchanaburi province, designated "MKR superspreader", and this particular strain later was found to also spread to other regions. In this study, we elucidated its biology through RNA-Seq analyses and identified a set of genes involved in cholesterol degradation to be up-regulated in the MKR during the macrophage cell infection, but not in the H37Rv reference strain. We also found that the bacterium up-regulated genes associated with the ESX-1 secretion system during its intracellular growth phase, while the H37Rv did not. All results were confirmed by qRT-PCR. Moreover, we showed that compounds previously shown to inhibit the mycobacterial ESX-1 secretion system and cholesterol utilisation, and FDA-approved drugs known to interfere with the host cholesterol transportation were able to decrease the intracellular survival of the MKR when compared to the untreated control, while not that of the H37Rv. Altogether, our findings suggested that such pathways are important for the MKR's intracellular growth, and potentially could be targets for the discovery of new drugs against this emerging multidrug-resistant strain of M. tuberculosis.


Assuntos
Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Colesterol/metabolismo , Interações Hospedeiro-Patógeno/genética , Mycobacterium tuberculosis/genética , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Sistemas de Secreção Tipo VII/genética , Antígenos de Bactérias/metabolismo , Antituberculosos/farmacologia , Proteínas de Bactérias/classificação , Proteínas de Bactérias/metabolismo , Pequim/epidemiologia , Biotransformação , Células Clonais , Surtos de Doenças , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/genética , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Redes e Vias Metabólicas/genética , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/patogenicidade , Células THP-1 , Tailândia/epidemiologia , Transcrição Gênica , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Tuberculose Resistente a Múltiplos Medicamentos/patologia , Sistemas de Secreção Tipo VII/efeitos dos fármacos , Sistemas de Secreção Tipo VII/metabolismo
7.
Sci Rep ; 11(1): 4342, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33619301

RESUMO

Induction of host cell autophagy by starvation was shown to enhance lysosomal delivery to mycobacterial phagosomes, resulting in the restriction of Mycobacterium tuberculosis reference strain H37Rv. Our previous study showed that strains belonging to M. tuberculosis Beijing genotype resisted starvation-induced autophagic elimination but the factors involved remained unclear. Here, we conducted RNA-Seq of macrophages infected with the autophagy-resistant Beijing strain (BJN) compared to macrophages infected with H37Rv upon autophagy induction by starvation. Results identified several genes uniquely upregulated in BJN-infected macrophages but not in H37Rv-infected cells, including those encoding Kxd1 and Plekhm2, which function in lysosome positioning towards the cell periphery. Unlike H37Rv, BJN suppressed enhanced lysosome positioning towards the perinuclear region and lysosomal delivery to its phagosome upon autophagy induction by starvation, while depletion of Kxd1 and Plekhm2 reverted such effects, resulting in restriction of BJN intracellular survival upon autophagy induction by starvation. Taken together, these data indicated that Kxd1 and Plekhm2 are important for the BJN strain to suppress lysosome positioning towards the perinuclear region and lysosomal delivery into its phagosome during autophagy induction by starvation to evade starvation-induced autophagic restriction.


Assuntos
Autofagia , Interações Hospedeiro-Patógeno , Lisossomos/metabolismo , Lisossomos/microbiologia , Mycobacterium tuberculosis/fisiologia , Tuberculose/metabolismo , Tuberculose/microbiologia , Autofagia/genética , Proteínas de Transporte/genética , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Ontologia Genética , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Anotação de Sequência Molecular , Transcriptoma , Tuberculose/genética , Tuberculose/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...