Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Renal Physiol ; 326(1): F57-F68, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37916285

RESUMO

Tolvaptan, a vasopressin antagonist selective for the V2-subtype vasopressin receptor (V2R), is widely used in the treatment of hyponatremia and autosomal-dominant polycystic kidney disease (ADPKD). Its effects on signaling in collecting duct cells have not been fully characterized. Here, we perform RNA-seq in a collecting duct cell line (mpkCCD). The data show that tolvaptan inhibits the expression of mRNAs that were previously shown to be increased in response to vasopressin including aquaporin-2, but also reveals mRNA changes that were not readily predictable and suggest off-target actions of tolvaptan. One such action is activation of the MAPK kinase (ERK1/ERK2) pathway. Prior studies have shown that ERK1/ERK2 activation is essential in the regulation of a variety of cellular and physiological processes and can be associated with cell proliferation. In immunoblotting experiments, we demonstrated that ERK1/ERK2 phosphorylation in mpkCCD cells was significantly reduced by vasopressin, in contrast to the increases seen in non-collecting-duct cells overexpressing V2R in prior studies. We also found that tolvaptan has a strong effect to increase ERK1/ERK2 phosphorylation in the presence of vasopressin and that tolvaptan's effect to increase ERK1/ERK2 phosphorylation is absent in mpkCCD cells in which both protein kinase A (PKA)-catalytic subunits have been deleted. Thus, it appears that the tolvaptan effect to increase ERK activation is PKA-dependent and is not due to an off-target effect of tolvaptan. We conclude that in cells expressing V2R at endogenous levels: 1) vasopressin decreases ERK1/ERK2 activation; 2) in the presence of vasopressin, tolvaptan increases ERK1/ERK2 activation; and 3) these effects are PKA-dependent.NEW & NOTEWORTHY Vasopressin is a key hormone that regulates the function of the collecting duct of the kidney. ERK1 and ERK2 are enzymes that play key roles in physiological regulation in all cells. The authors used collecting duct cell cultures to investigate the effects of vasopressin and the vasopressin receptor antagonist tolvaptan on ERK1 and ERK2 phosphorylation and activation.


Assuntos
Sistema de Sinalização das MAP Quinases , Receptores de Vasopressinas , Tolvaptan/farmacologia , Tolvaptan/metabolismo , Receptores de Vasopressinas/metabolismo , Fosforilação , Rim/metabolismo , Antagonistas dos Receptores de Hormônios Antidiuréticos/farmacologia , Antagonistas dos Receptores de Hormônios Antidiuréticos/metabolismo , Vasopressinas/farmacologia , Vasopressinas/metabolismo
3.
Life Sci ; 296: 120444, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35245523

RESUMO

Peroxisome proliferator activated receptor alpha (PPAR-α) deletion has been shown to increase blood pressure (BP). We hypothesized that the BP increase in PPAR-α KO mice was mediated by increased expression and activity of basolateral Na+/K+ ATPase (NKA) pump. To address this hypothesis, we treated wild-type (WT) and PPAR-α knockout (KO) mice with a slow-pressor dose of angiotensin II (400 ng/kg·min) for 12 days by osmotic minipump. Radiotelemetry showed no significant differences in baseline mean arterial pressure (MAP) between WT and PPAR-α KO mice; however, by day 12 of infusion, MAP was significantly higher in PPAR-α KO mice (156 ± 16) compared to WT mice (138 ± 11 mmHg). NKA activity and protein expression (α1 subunit) were significantly higher in PPAR-α KO mice compared to WT mice. There was no significant difference in NKA mRNA levels. Angiotensin II further increased the expression and activity of the NKA in both genotypes along with the water channel, aquaporin 1 (Aqp1). In contrast, angiotensin II decreased the expression (64-97% reduction in band density) of sodium­hydrogen exchanger-3 (NHE3), NHE regulatory factor-1 (NHERF1, Slc9a3r1), sodium­potassium-2-chloride cotransporter (NKCC2), and epithelial sodium channel (ENaC) ß- and γ- subunits in the renal cortex of both WT and PPAR-α KO mice, with no difference between genotypes. The sodium-chloride cotransporter (NCC) was also decreased by angiotensin II, but significantly more in PPAR-α KO (59% WT versus 77% KO reduction from their respective vehicle-treated mice). Our results suggest that PPAR-α attenuates angiotensin II-mediated increased blood pressure potentially via reducing expression and activity of the NKA.


Assuntos
Angiotensina II/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Rim/metabolismo , PPAR alfa/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Aquaporina 1/metabolismo , Pressão Sanguínea/fisiologia , Rim/efeitos dos fármacos , Masculino , Camundongos Endogâmicos , Camundongos Knockout , PPAR alfa/metabolismo , Fosfoproteínas/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , Membro 1 da Família 12 de Carreador de Soluto/metabolismo
4.
Annu Rev Pharmacol Toxicol ; 62: 595-616, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34579536

RESUMO

Systems biology can be defined as the study of a biological process in which all of the relevant components are investigated together in parallel to discover the mechanism. Although the approach is not new, it has come to the forefront as a result of genome sequencing projects completed in the first few years of the current century. It has elements of large-scale data acquisition (chiefly next-generation sequencing-based methods and protein mass spectrometry) and large-scale data analysis (big data integration and Bayesian modeling). Here we discuss these methodologies and show how they can be applied to understand the downstream effects of GPCR signaling, specifically looking at how the neurohypophyseal peptide hormone vasopressin, working through the V2 receptor and PKA activation, regulates the water channel aquaporin-2. The emerging picture provides a detailedframework for understanding the molecular mechanisms involved in water balance disorders, pointing the way to improved treatment of both polyuric disorders and water-retention disorders causing dilutional hyponatremia.


Assuntos
Receptores de Vasopressinas , Desequilíbrio Hidroeletrolítico , Aquaporina 2/metabolismo , Teorema de Bayes , Humanos , Receptores de Vasopressinas/genética , Receptores de Vasopressinas/metabolismo , Biologia de Sistemas
5.
Am J Physiol Cell Physiol ; 321(3): C507-C518, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34191628

RESUMO

The fluid in the 14 distinct segments of the renal tubule undergoes sequential transport processes that gradually convert the glomerular filtrate into the final urine. The solute carrier (SLC) family of proteins is responsible for much of the transport of ions and organic molecules along the renal tubule. In addition, some SLC family proteins mediate housekeeping functions by transporting substrates for metabolism. Here, we have developed a curated list of SLC family proteins. We used the list to produce resource webpages that map these proteins and their transcripts to specific segments along the renal tubule. The data were used to highlight some interesting features of expression along the renal tubule including sex-specific expression in the proximal tubule and the role of accessory proteins (ß-subunit proteins) that are thought to be important for polarized targeting in renal tubule epithelia. Also, as an example of application of the data resource, we describe the patterns of acid-base transporter expression along the renal tubule.


Assuntos
Nefropatias/genética , Glomérulos Renais/metabolismo , Medula Renal/metabolismo , Túbulos Renais/metabolismo , Organoides/metabolismo , Proteínas Carreadoras de Solutos/genética , Animais , Transporte Biológico , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ontologia Genética , Taxa de Filtração Glomerular , Humanos , Nefropatias/metabolismo , Nefropatias/patologia , Glomérulos Renais/patologia , Medula Renal/patologia , Túbulos Renais/patologia , Masculino , Camundongos , Anotação de Sequência Molecular , Organoides/patologia , Fatores Sexuais , Análise de Célula Única , Proteínas Carreadoras de Solutos/classificação , Proteínas Carreadoras de Solutos/metabolismo
6.
J Am Soc Nephrol ; 32(1): 86-97, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33122286

RESUMO

BACKGROUND: Cultured cell lines are widely used for research in the physiology, pathophysiology, toxicology, and pharmacology of the renal proximal tubule. The lines that are most appropriate for a given use depend upon the genes expressed. New tools for transcriptomic profiling using RNA sequencing (RNA-Seq) make it possible to catalog expressed genes in each cell line. METHODS: Fourteen different proximal tubule cell lines, representing six species, were grown on permeable supports under conditions specific for the respective lines. RNA-Seq followed standard procedures. RESULTS: Transcripts expressed in cell lines variably matched transcripts selectively expressed in native proximal tubule. Opossum kidney (OK) cells displayed the highest percentage match (45% of proximal marker genes [TPM threshold =15]), with pig kidney cells (LLC-PK1) close behind (39%). Lower-percentage matches were seen for various human lines, including HK-2 (26%), and lines from rodent kidneys, such as NRK-52E (23%). Nominally, identical OK cells from different sources differed substantially in expression of proximal tubule markers. Mapping cell line transcriptomes to gene sets for various proximal tubule functions (sodium and water transport, protein transport, metabolic functions, endocrine functions) showed that different lines may be optimal for experimentally modeling each function. An online resource (https://esbl.nhlbi.nih.gov/JBrowse/KCT/) has been created to interrogate cell line transcriptome data. Proteomic analysis of NRK-52E cells confirmed low expression of many proximal tubule marker proteins. CONCLUSIONS: No cell line fully matched the transcriptome of native proximal tubule cells. However, some of the lines tested are suitable for the study of particular metabolic and transport processes seen in the proximal tubule.


Assuntos
Técnicas de Cultura de Células/métodos , Túbulos Renais Proximais/metabolismo , Transcriptoma , Animais , Transporte Biológico , Linhagem Celular , Cromatografia Líquida , Perfilação da Expressão Gênica , Humanos , Internet , Camundongos , Gambás , Proteômica , RNA-Seq , Ratos , Análise de Sequência de RNA , Especificidade da Espécie , Suínos , Espectrometria de Massas em Tandem
7.
Cardiovasc Drugs Ther ; 35(1): 113-123, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33079319

RESUMO

PURPOSE: Plasma membranes constitute a gathering point for lipids and signaling proteins. Lipids are known to regulate the location and activity of signaling proteins under physiological and pathophysiological conditions. Membrane lipid therapies (MLTs) that gradually modify lipid content of plasma membranes have been developed to treat chronic disease; however, no MLTs have been developed to treat acute conditions such as reperfusion injury following myocardial infarction (MI) and percutaneous coronary intervention (PCI). A fusogenic nanoliposome (FNL) that rapidly incorporates exogenous unsaturated lipids into endothelial cell (EC) membranes was developed to attenuate reperfusion-induced protein signaling. We hypothesized that administration of intracoronary (IC) FNL-MLT interferes with EC membrane protein signaling, leading to reduced microvascular dysfunction and infarct size (IS). METHODS: Using a myocardial ischemia/reperfusion swine model, the efficacy of FNL-MLT in reducing IS following a 60-min coronary artery occlusion was tested. Animals were randomized to receive IC Ringer's lactate solution with or without 10 mg/mL/min of FNLs for 10 min prior to reperfusion (n = 6 per group). RESULTS: The IC FNL-MLT reduced IS (25.45 ± 16.4% vs. 49.7 ± 14.1%, P < 0.02) and enhanced regional myocardial blood flow (RMBF) in the ischemic zone at 15 min of reperfusion (2.13 ± 1.48 mL/min/g vs. 0.70 ± 0.43 mL/min/g, P < 0.001). The total cumulative plasma levels of the cardiac injury biomarker cardiac troponin I (cTnI) were trending downward but were not significant (999.3 ± 38.7 ng/mL vs. 1456.5 ± 64.8 ng/mL, P = 0.1867). However, plasma levels of heart-specific fatty acid binding protein (hFABP), another injury biomarker, were reduced at 2 h of reperfusion (70.3 ± 38.0 ng/mL vs. 137.3 ± 58.2 ng/mL, P = 0.0115).  CONCLUSION: The IC FNL-MLT reduced IS compared to vehicle in this swine model. The FNL-MLT maybe a promising adjuvant to PCI in the treatment of acute MI.


Assuntos
Lipídeos de Membrana/administração & dosagem , Lipídeos de Membrana/farmacologia , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Nanopartículas/química , Animais , Modelos Animais de Doenças , Portadores de Fármacos , Células Endoteliais/citologia , Feminino , Lipossomos/química , Camundongos , Transdução de Sinais , Suínos
9.
Life Sci ; 243: 117226, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31904366

RESUMO

Hypertension is a risk factor for premature death and roughly 50% of hypertensive patients are salt-sensitive. The incidence of salt-sensitive hypertension increases with age. However, the mechanisms of salt-sensitive hypertension are not well understood. We had demonstrated decreased renal sodium­hydrogen exchanger regulatory factor 1 (NHERF1) expression in old salt-resistant F344 rats. Based on those studies we hypothesized that NHERF1 expression is required for the development of some forms of salt-sensitive hypertension. To address this hypothesis, we measured blood pressure in NHERF1 expressing salt-sensitive 4-mo and 24-mo-old male and female Fischer Brown Norway (FBN) rats male and female 18-mo-old NHERF1 knock-out (NHERF1-/-) mice and wild-type (WT) littermates on C57BL/6J background after feeding high salt (8% NaCl) diet for 7 days. Our data demonstrate that 8% salt diet increased blood pressure in both male and female 24-mo-old FBN rats but not in 4-mo-old FBN rats and in 18-mo-old male and female WT mice but not in NHERF1-/- mice. Renal dopamine 1 receptor (D1R) expression was decreased in 24-mo-old rats, compared with 4-mo-old FBN rats. However, sodium chloride cotransporter (NCC) expression increased in 24-mo-old FBN rats. In FBN rats, age had no effect on NaK ATPase α1 and NKCC2 expression. By contrast, high salt diet increased the renal expressions of NKCC2, and NCC in 24-mo-old FBN rats. High salt diet also increased NKCC2 and NCC expression in WT mice but not NHERF1-/- mice. Our data suggest that renal NHERF1 expression confers salt sensitivity with aging, associated with increased expression of sodium transporters.


Assuntos
Envelhecimento/metabolismo , Hipertensão/metabolismo , Fosfoproteínas/fisiologia , Cloreto de Sódio na Dieta/administração & dosagem , Trocadores de Sódio-Hidrogênio/fisiologia , Animais , Pressão Sanguínea , Modelos Animais de Doenças , Feminino , Rim/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfoproteínas/genética , Ratos , Ratos Endogâmicos F344 , Trocadores de Sódio-Hidrogênio/genética
10.
Am J Pathol ; 189(6): 1190-1200, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30926337

RESUMO

Na+/H+ exchange regulatory cofactor (NHERF)-1, a scaffolding protein, anchors multiple membrane proteins in renal proximal tubules. Cultured proximal tubule cells deficient in Nherf1 and proximal tubules from Nherf1-deficient mice exhibit aberrant trafficking. Nherf1-deficient cells also exhibit an altered transcription pattern and worse survival. These observations suggest that NHERF1 loss increases susceptibility to acute kidney injury (AKI). Male and female wild-type C57BL/6J and Nherf1 knockout mice were treated with saline or cisplatin (20 mg/kg dose i.p.) to induce AKI and were euthanized after 72 hours. Blood and urine were collected for assessments of blood urea nitrogen and neutrophil gelatinase-associated lipocalin, respectively. Kidneys were harvested for histology (hematoxylin and eosin, periodic acid-Schiff) and terminal deoxynucleotidyl transferase dUTP nick end labeling assay, Kim1 mRNA assessment, and Western blot analysis for cleaved caspase 3. Cisplatin treatment was associated with significantly greater severity of AKI in knockout compared with wild-type mice, as demonstrated by semiquantitative injury score (2.8 versus 1.89, P < 0.001), blood urea nitrogen (151.8 ± 17.2 mg/dL versus 97.8 ± 10.1 mg/dL, P < 0.05), and neutrophil gelatinase-associated lipocalin urine protein (55.6 ± 21.3 µg/mL versus 2.7 ± 0.53 µg/mL, P < 0.05). Apoptosis markers were significantly increased in cisplatin-treated Nherf1 knockout and wild-type mice compared to respective controls. These data suggest that NHERF1 loss increases susceptibility to AKI.


Assuntos
Injúria Renal Aguda/metabolismo , Cisplatino/efeitos adversos , Fosfoproteínas/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/genética , Injúria Renal Aguda/patologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Caspase 3/metabolismo , Cisplatino/farmacologia , Suscetibilidade a Doenças , Feminino , Receptor Celular 1 do Vírus da Hepatite A/metabolismo , Lipocalina-2/metabolismo , Masculino , Camundongos , Camundongos Knockout , Fosfoproteínas/genética , Trocadores de Sódio-Hidrogênio/genética
12.
Am J Physiol Cell Physiol ; 313(2): C197-C206, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28515088

RESUMO

Dopamine decreases Na-K-ATPase (NKA) activity by PKC-dependent phosphorylation and endocytosis of the NKA α1. Dopamine-mediated regulation of NKA is impaired in aging and some forms of hypertension. Using opossum (OK) proximal tubule cells (PTCs), we demonstrated that sodium-hydrogen exchanger regulatory factor-1 (NHERF-1) associates with NKA α1 and dopamine-1 receptor (D1R). This association is required for the dopamine-mediated regulation of NKA. In OK cells, dopamine decreases NHERF-1 association with NKA α1 but increases its association with D1R. However, it is not known whether NHERF-1 plays a role in dopamine-mediated NKA regulation in animal models of hypertension. We hypothesized that defective dopamine-mediated regulation of NKA results from the decrease in NHERF-1 expression in rat renal PTCs isolated from animal models of hypertension [spontaneously hypertensive rats (SHRs) and aged F344 rats]. To test this hypothesis, we isolated and cultured renal PTCs from 22-mo-old F344 rats and their controls, normotensive 4-mo-old F344 rats, and SHRs and their controls, normotensive Wistar-Kyoto (WKY) rats. The results demonstrate that in both hypertensive models (SHR and aged F344), NHERF-1 expression, dopamine-mediated phosphorylation of NKA, and ouabain-inhibitable K+ transport are reduced. Transfection of NHERF-1 into PTCs from aged F344 and SHRs restored dopamine-mediated inhibition of NKA. These results suggest that decreased renal NHERF-1 expression contributes to the impaired dopamine-mediated inhibition of NKA in PTCs from animal models of hypertension.


Assuntos
Hipertensão/genética , Túbulos Renais Proximais/metabolismo , Fosfoproteínas/biossíntese , Trocadores de Sódio-Hidrogênio/biossíntese , ATPase Trocadora de Sódio-Potássio/biossíntese , Animais , Pressão Sanguínea/genética , Linhagem Celular , Modelos Animais de Doenças , Dopamina/metabolismo , Regulação da Expressão Gênica/genética , Humanos , Hipertensão/metabolismo , Hipertensão/patologia , Rim/metabolismo , Rim/patologia , Túbulos Renais Proximais/patologia , Masculino , Fosfoproteínas/genética , Ratos , Ratos Endogâmicos SHR , Transdução de Sinais/genética , Trocadores de Sódio-Hidrogênio/genética , ATPase Trocadora de Sódio-Potássio/genética
13.
Neurotox Res ; 32(1): 8-13, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28342135

RESUMO

The detrimental effects of heavy drinking and smoking are multiplied when the two are combined. Treatment modalities for each and especially for the combination are very limited. Although in low concentration, alcohol and nicotine, each may have beneficial effects including neuroprotection, their combination, instead of providing additive protection, may actually lead to toxicity in cell cultures. Pituitary adenylate cyclase-activating polypeptide (PACAP) is an endogenous 38 amino-acid peptide with demonstrated protection against neuronal injury, trauma as well as various endogenous and exogenous toxic agents. The aim of this study was to investigate whether PACAP may also protect against toxicity induced by high alcohol, high nicotine, or the combination of low alcohol and nicotine concentrations, and if so, whether this effect was mediated via PAC1 receptor. We used the neuroblastoma-derived SH-SY5Y cells and applied various colorimetric assays for determination of cell viability or toxicity. Results indicate that PACAP blocks toxicity induced by high alcohol and high nicotine as well as their combination at low concentrations. The effects of PACAP in turn were blocked by the PACAP antagonist (PACAP 6-38), indicating involvement of the PACAP receptor PAC1 and possibly vasoactive intestinal peptide (VIP) receptors in PACAP's protection. Moreover, no combined toxicity of low alcohol and low nicotine could be detected in calcium-free medium. These findings suggest possible beneficial effects of PACAP in preventing alcohol and nicotine toxicity and that calcium contributes to the damage induced by combination of low alcohol and nicotine in SH-SY5Y cells.


Assuntos
Depressores do Sistema Nervoso Central/toxicidade , Etanol/toxicidade , Neurotransmissores/farmacologia , Nicotina/toxicidade , Agonistas Nicotínicos/toxicidade , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Cálcio/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Combinação de Medicamentos , Fluoresceínas/metabolismo , Humanos , Neuroblastoma/patologia
14.
Biochim Biophys Acta ; 1863(11): 2624-2636, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27496272

RESUMO

Our laboratory has recently demonstrated that low concentrations of ouabain increase blood pressure in rats associated with stimulation of NaK ATPase activity and activation of the Src signaling cascade in NHE1-dependent manner. Proteomic analysis of human kidney proximal tubule cells (HKC11) suggested that the Angiotensin II type 1 receptor (AT1R) as an ouabain-associating protein. We hypothesize that ouabain-induced stimulation of NaK ATPase activity is mediated through AT1R. To test this hypothesis, we examined the effect of ouabain on renal cell angiotensin II production, the effect of AT1R inhibition on ouabain-stimulated NKA activity, and the effect of ouabain on NKA-AT1R association. Ouabain increased plasma angiotensin II levels in rats treated with ouabain (1µg/kg body wt./day) for 9days and increased angiotensin II levels in cell culture media after 24h treatment with ouabain in human (HKC11), mouse (MRPT), and human adrenal cells. Ouabain 10pM stimulated NKA-mediated 86Rb uptake and phosphorylation of EGFR, Src, and ERK1/2. These effects were prevented by the AT1R receptor blocker candesartan. FRET and TIRF microscopy using Bodipy-labeled ouabain and mCherry-NKA or mCherry-AT1R demonstrated association of ouabain with AT1R and NKA. Further our FRET and TIRF studies demonstrated increased association between AT1R and NKA upon treatment with low dose ouabain. We conclude that ouabain stimulates NKA in renal proximal tubule cells through an angiotensin/AT1R-dependent mechanism and that this pathway contributes to cardiac glycoside associated hypertension.


Assuntos
Ativadores de Enzimas/farmacologia , Túbulos Renais Proximais/efeitos dos fármacos , Ouabaína/farmacologia , Receptor Tipo 1 de Angiotensina/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Angiotensina II/metabolismo , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Angiotensinogênio/metabolismo , Animais , Linhagem Celular , Relação Dose-Resposta a Droga , Ativação Enzimática , Ativadores de Enzimas/toxicidade , Hipertensão/induzido quimicamente , Hipertensão/enzimologia , Túbulos Renais Proximais/enzimologia , Camundongos , Ouabaína/toxicidade , Peptidil Dipeptidase A/metabolismo , Fosforilação , Ligação Proteica , Ratos Sprague-Dawley , Receptor Tipo 1 de Angiotensina/genética , Transdução de Sinais/efeitos dos fármacos , ATPase Trocadora de Sódio-Potássio/genética , Transfecção
15.
Cell Physiol Biochem ; 39(1): 1-12, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27322746

RESUMO

BACKGROUND/AIMS: Phosphate homeostasis is controlled by the renal reabsorption of Pi by the type IIa sodium phosphate cotransporter, Npt2a, which is localized in the proximal tubule brush border membrane. Regulation of Npt2a expression is a key control point to maintain phosphate homeostasis with most studies focused on regulating protein levels in the brush border membrane. Molecular mechanisms that control Npt2a mRNA, however, remain to be defined. We have reported that Npt2a mRNA and protein levels correlate directly with the expression of the Na+/H+ exchanger regulatory factor 1 (NHERF-1) using opossum kidney (OK) cells and the NHERF-1-deficient OK-H cells. The goal of this study was to determine whether NHERF-1 contributes to transcriptional and/or post-transcriptional mechanisms controlling Npt2a mRNA levels. METHODS: Npt2a mRNA half-life was compared between OK and NHERF-1 deficient OK-H cell lines. oNpt2a promoter-reporter gene assays and electrophoretic mobility shift assays (EMSA) were used identify a NHERF-1 responsive region within the oNpt2a proximal promoter. RESULTS: Npt2a mRNA half-life is the same in OK and OK-H cells. The NHERF-1 responsive region lies within the proximal promoter in a region that contains a highly conserved CAATT box and G-rich element. Specific protein-DNA complex formation with the CAATT element is altered by the absence of NHERF-1 (OK v OK-H EMSA) although NHERF-1 does not directly contribute to complex formation. CONCLUSION: NHERF-1 helps maintain steady-state Npt2a mRNA levels in OK cells through indirect mechanisms that help promote protein-DNA interactions at the Npt2a proximal promoter.


Assuntos
DNA/genética , Fosfoproteínas/genética , Regiões Promotoras Genéticas/genética , Trocadores de Sódio-Hidrogênio/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/genética , Animais , Sequência de Bases , Sítios de Ligação/genética , Linhagem Celular , DNA/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/metabolismo , Gambás , Fosfatos/metabolismo , Fosfatos/farmacologia , Fosfoproteínas/metabolismo , Ligação Proteica , Estabilidade de RNA/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Trocadores de Sódio-Hidrogênio/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/metabolismo
16.
Am J Physiol Cell Physiol ; 310(3): C205-15, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26834145

RESUMO

Parathyroid hormone (PTH) is a key regulator of the expression and function of the type IIa sodium-phosphate cotransporter (Npt2a), the protein responsible for regulated renal phosphate reabsorption. We previously showed that PTH induces rapid decay of Npt2a mRNA through posttranscriptional mechanisms. We hypothesized that PTH-induced changes in RNA-binding protein (RBP) activity mediate the degradation of Npt2a mRNA. To address this aim, we treated opossum kidney (OK) cells, a PTH-sensitive proximal tubule cell culture model, with 100 nM PTH for 30 min and 2 h, followed by mass spectrometry characterization of the PTH-stimulated phosphoproteome. We identified 1,182 proteins differentially phosphorylated in response to PTH, including 68 RBPs. Preliminary analysis identified a phospho-RBP, hnRNPK-homology-type-splicing regulatory protein (KSRP), with predicted binding sites for the 3'-untranslated region (UTR) of Npt2a mRNA. Western blot analysis confirmed expression of KSRP in OK cells and showed PTH-dependent translocation to the nucleus. Immunoprecipitation of KSRP from control and PTH-treated cells followed by RNA isolation and RT-quantitative PCR analysis identified Npt2a mRNA from both control and PTH-treated KSRP pulldowns. Knockdown of KSRP followed by PTH treatment showed that KSRP is required for mediating PTH-stimulated reduction in sodium/hydrogen exchanger 3 mRNA, but not Npt2a mRNA. We conclude that 1) PTH is a major regulator of both transcription and translation, and 2) KSRP binds Npt2a mRNA but its role in PTH regulation of Npt2a mRNA is not clear.


Assuntos
Túbulos Renais Proximais/efeitos dos fármacos , Hormônio Paratireóideo/farmacologia , Estabilidade de RNA , RNA Mensageiro/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/genética , Regiões 3' não Traduzidas , Animais , Sítios de Ligação , Linhagem Celular , Biologia Computacional , Bases de Dados Genéticas , Túbulos Renais Proximais/metabolismo , Espectrometria de Massas , Gambás , Fosforilação , Ligação Proteica , Proteômica/métodos , Interferência de RNA , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/metabolismo , Fatores de Tempo , Transativadores/genética , Transativadores/metabolismo , Transfecção
17.
Am J Physiol Renal Physiol ; 309(11): F933-42, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26377793

RESUMO

We have previously demonstrated that the circadian clock protein period (Per)1 coordinately regulates multiple genes involved in Na(+) reabsorption in renal collecting duct cells. Consistent with these results, Per1 knockout mice exhibit dramatically lower blood pressure than wild-type mice. The proximal tubule is responsible for a majority of Na(+) reabsorption. Previous work has demonstrated that expression of Na(+)/H(+) exchanger 3 (NHE3) oscillates with a circadian pattern and Na(+)-glucose cotransporter (SGLT)1 has been demonstrated to be a circadian target in the colon, but whether these target genes are regulated by Per1 has not been investigated in the kidney. The goal of the present study was to determine if Per1 regulates the expression of NHE3, SGLT1, and SGLT2 in the kidney. Pharmacological blockade of nuclear Per1 entry resulted in decreased mRNA expression of SGLT1 and NHE3 but not SGLT2 in the renal cortex of mice. Per1 small interfering RNA and pharmacological blockade of Per1 nuclear entry in human proximal tubule HK-2 cells yielded the same results. Examination of heterogeneous nuclear RNA suggested that the effects of Per1 on NHE3 and SGLT1 expression occurred at the level of transcription. Per1 and the circadian protein CLOCK were detected at promoters of NHE3 and SGLT1. Importantly, both membrane and intracellular protein levels of NHE3 and SGLT1 were decreased after blockade of nuclear Per1 entry. This effect was associated with reduced activity of Na(+)-K(+)-ATPase. These data demonstrate a role for Per1 in the transcriptional regulation of NHE3 and SGLT1 in the kidney.


Assuntos
Túbulos Renais Proximais/metabolismo , Proteínas Circadianas Period/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Transcrição Gênica , Transporte Ativo do Núcleo Celular , Animais , Sítios de Ligação , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Caseína Quinase 1 épsilon/antagonistas & inibidores , Caseína Quinase 1 épsilon/metabolismo , Caseína Quinase Idelta/antagonistas & inibidores , Caseína Quinase Idelta/metabolismo , Linhagem Celular , Regulação da Expressão Gênica , Humanos , Túbulos Renais Proximais/efeitos dos fármacos , Masculino , Camundongos da Linhagem 129 , Camundongos Knockout , Proteínas Circadianas Period/deficiência , Proteínas Circadianas Period/genética , Regiões Promotoras Genéticas , Pirimidinas/farmacologia , Interferência de RNA , RNA Mensageiro/metabolismo , Transportador 1 de Glucose-Sódio/genética , Transportador 1 de Glucose-Sódio/metabolismo , Trocador 3 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Fatores de Tempo , Transcrição Gênica/efeitos dos fármacos , Transfecção
18.
Am J Physiol Renal Physiol ; 309(2): F109-19, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25995109

RESUMO

Na+/H+ exchanger regulatory factor (NHERF1) plays a critical role in the renal transport of phosphate by binding to Na+-Pi cotransporter (NpT2a) in the proximal tubule. While the association between NpT2a and NHERF1 in the apical membrane is known, the role of NHERF1 to regulate the trafficking of NpT2a has not been studied. To address this question, we performed cell fractionation by sucrose gradient centrifugation in opossum kidney (OK) cells placed in low-Pi medium to stimulate forward trafficking of NpT2a. Immunoblot analysis demonstrated expression of NpT2a and NHERF1 in the endoplasmic reticulum (ER)/Golgi. Coimmunoprecipitation demonstrated a NpT2a-NHERF1 interaction in the ER/Golgi. Low-Pi medium for 4 and 8 h triggered a decrease in NHERF1 in the plasma membrane with a corresponding increase in the ER/Golgi. Time-lapse total internal reflection fluorescence imaging of OK cells placed in low-Pi medium, paired with particle tracking and mean square displacement analysis, indicated active directed movement of NHERF1 at early and late time points, whereas NpT2a showed active movement only at later times. Silence of NHERF1 in OK cells expressing green fluorescent protein (GFP)-NpT2a resulted in an intracellular accumulation of GFP-NpT2a. Transfection with GFP-labeled COOH-terminal (TRL) PDZ-binding motif deleted or wild-type NpT2a in OK cells followed by cell fractionation and immunoprecipitation confirmed that the interaction between NpT2a and NHERF1 was dependent on the TRL motif of NpT2a. We conclude that appropriate trafficking of NpT2a to the plasma membrane is dependent on the initial association between NpT2a and NHERF1 through the COOH-terminal TRL motif of NpT2a in the ER/Golgi and requires redistribution of NHERF1 to the ER/Golgi.


Assuntos
Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Rim/metabolismo , Fosfoproteínas/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/metabolismo , Animais , Linhagem Celular , Didelphis
19.
Biochim Biophys Acta ; 1843(12): 2816-26, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25127936

RESUMO

Hyperglycemia (HG) reduces AMPK activation leading to impaired autophagy and matrix accumulation. Hydrogen sulfide (H2S) treatment improves HG-induced renovascular remodeling however, its mechanism remains unclear. Activation of LKB1 by the formation of heterotrimeric complex with STRAD and MO25 is known to activate AMPK. We hypothesized that in HG; H2S induces autophagy and modulates matrix synthesis through AMPK-dependent LKB1/STRAD/MO25 complex formation. To address this hypothesis, mouse glomerular endothelial cells were treated with normal and high glucose in the absence or presence of sodium hydrogen sulfide (NaHS), an H2S donor. HG decreased the expression of H2S regulating enzymes CBS and CSE, and autophagy markers Atg5, Atg7, Atg3 and LC3B/A ratio. HG increased galectin-3 and periostin, markers of matrix accumulation. Treatment with NaHS to HG cells increased LKB1/STRAD/MO25 formation and AMPK phosphorylation. Silencing the encoded genes confirmed complex formation under normoglycemia. H2S-mediated AMPK activation in HG was associated with upregulation of autophagy and diminished matrix accumulation. We conclude that H2S mitigates adverse remodeling in HG by induction of autophagy and regulation of matrix metabolism through LKB1/STRAD/MO25 dependent pathway.

20.
Biochim Biophys Acta ; 1843(6): 1089-102, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24566089

RESUMO

Recent studies suggest that at low concentrations, ouabain increases Na-K ATPase and NHE1 activity and activates the Src signaling cascade in proximal tubule cells. Our laboratory demonstrated that low concentrations of ouabain increase blood pressure in rats. We hypothesize that ouabain-induced increase in blood pressure and Na-K ATPase activity requires NHE1 activity and association. To test this hypothesis we treated rats with ouabain (1µgkg body wt(-1)day(-1)) for 9days in the presence or absence of the NHE1 inhibitor, zoniporide. Ouabain stimulated a significant increase in blood pressure which was prevented by zoniporide. Using NHE1-expressing Human Kidney cells 2 (HK2), 8 (HK8) and 11 (HK11) and Mouse Kidney cells from Wild type (WT) and NHE1 knock-out mice (SWE) cell lines, we show that ouabain stimulated Na-K ATPase activity and surface expression in a Src-dependent manner in NHE1-expressing cells but not in NHE1-deplete cells. Zoniporide prevented ouabain-induced stimulation of (86)Rb uptake in the NHE1-expressing cells. FRET and TIRF microscopy showed that ouabain increased association between GFP-NHE1 and mCherry-Na-K ATPase transfected into NHE1-deficient SWE cells. Mutational analysis demonstrated that the caveolin binding motif (CBM) of Na-K ATPase α1 is required for translocation of both Na-K ATPase α1 and NHE1 to the basolateral membrane. Mutations in activity or scaffold domains of NHE1 resulted in loss of ouabain-mediated regulation of Na-K ATPase. These results support that NHE1 is required for the ouabain-induced increase in blood pressure, and that the caveolin binding motif of Na-K ATPase α1 as well as the activity and scaffolding domains of NHE1 are required for their functional association.


Assuntos
Cardiotônicos/farmacologia , Proteínas de Transporte de Cátions/fisiologia , Túbulos Renais Proximais/efeitos dos fármacos , Ouabaína/farmacologia , Trocadores de Sódio-Hidrogênio/fisiologia , ATPase Trocadora de Sódio-Potássio/química , ATPase Trocadora de Sódio-Potássio/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Biotinilação , Pressão Sanguínea/efeitos dos fármacos , Western Blotting , Caveolina 1/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Células Cultivadas , Transferência Ressonante de Energia de Fluorescência , Humanos , Hidrólise , Técnicas Imunoenzimáticas , Transporte de Íons/efeitos dos fármacos , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/metabolismo , Masculino , Camundongos , Camundongos Knockout , Fosforilação/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Trocador 1 de Sódio-Hidrogênio , Quinases da Família src/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...