Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 11: e15059, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37033727

RESUMO

We often quantify the rate at which a behaviour occurs by counting the number of times it occurs within a specific, short observation period. Measuring behaviour in such a way is typically unavoidable but induces error. This error acts to systematically reduce effect sizes, including metrics of particular interest to behavioural and evolutionary ecologists such as R2 , repeatability (intra-class correlation, ICC) and heritability. Through introducing a null model, the Poisson process, for modelling the frequency of behaviour, we give a mechanistic explanation of how this problem arises and demonstrate how it makes comparisons between studies and species problematic, because the magnitude of the error depends on how frequently the behaviour has been observed as well as how biologically variable the behaviour is. Importantly, the degree of error is predictable and so can be corrected for. Using the example of parental provisioning rate in birds, we assess the applicability of our null model for modelling the frequency of behaviour. We then survey recent literature and demonstrate that the error is rarely accounted for in current analyses. We highlight the problems that arise from this and provide solutions. We further discuss the biological implications of deviations from our null model, and highlight the new avenues of research that they may provide. Adopting our recommendations into analyses of behavioural counts will improve the accuracy of estimated effect sizes and allow meaningful comparisons to be made between studies.


Assuntos
Aves , Animais , Causalidade , Viés
2.
Ecol Evol ; 8(7): 3693-3701, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29686850

RESUMO

Evolutionary theory predicts that parents should invest equally in the two sexes. If one sex is more costly, a production bias is predicted in favour of the other. Two well-studied causes of differential costs are size dimorphism, in which the larger sex should be more costly, and sex-biased helping in cooperative breeders, in which the more helpful sex should be less costly because future helping "repays" some of its parents' investment. We studied a bird species in which both processes should favor production of males. Female riflemen Acanthisitta chloris are larger than males, and we documented greater provisioning effort in more female-biased broods indicating they are likely costlier to raise. Riflemen are also cooperative breeders, and males provide more help than females. Contrary to expectations, we observed no male bias in brood sex ratios, which did not differ significantly from parity. We tested whether the lack of a population-wide pattern was a result of facultative sex allocation by individual females, but this hypothesis was not supported either. Our results show an absence of adaptive patterns despite a clear directional hypothesis derived from theory. This appears to be associated with a suboptimal female-biased investment ratio. We conclude that predictions of adaptive sex allocation may falter because of mechanistic constraint, unrecognized costs and benefits, or weak selection.

3.
Am Nat ; 190(4): 547-556, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28937820

RESUMO

The repayment hypothesis predicts that reproductive females in cooperative breeding systems overproduce the helping sex. Thanks to well-documented examples of this predicted sex ratio bias, repayment has been considered an important driver of variation in sex allocation patterns. Here we test this hypothesis using data on population brood sex ratios and facultative sex allocation from 28 cooperatively breeding bird species. We find that biased sex ratios of helpers do not correlate with production biases in brood sex ratios, contrary to predictions. We also test whether females facultatively produce the helping sex in response to a deficiency of help (i.e., when they have fewer or no helpers). Although this is observed in a few species, it is not a significant trend overall, with a mean effect size close to zero. We conclude that, surprisingly, repayment does not appear to be a widespread influence on sex ratios in cooperatively breeding birds. We discuss possible explanations for our results and encourage further examination of the repayment model.


Assuntos
Aves , Reprodução , Razão de Masculinidade , Animais , Feminino , Modelos Teóricos , Comportamento Social
4.
PLoS One ; 7(10): e47080, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23056586

RESUMO

Birds have long fascinated scientists and travellers, so their distribution and abundance through time have been better documented than those of other organisms. Many bird species are known to have gone extinct, but information on subspecies extinctions has never been synthesised comprehensively. We reviewed the timing, spatial patterns, trends and causes of avian extinctions on a global scale, identifying 279 ultrataxa (141 monotypic species and 138 subspecies of polytypic species) that have gone extinct since 1500. Species extinctions peaked in the early 20(th) century, then fell until the mid 20(th) century, and have subsequently accelerated. However, extinctions of ultrataxa peaked in the second half of the 20(th) century. This trend reflects a consistent decline in the rate of extinctions on islands since the beginning of the 20(th) century, but an acceleration in the extinction rate on continents. Most losses (78.7% of species and 63.0% of subspecies) occurred on oceanic islands. Geographic foci of extinctions include the Hawaiian Islands (36 taxa), mainland Australia and islands (29 taxa), the Mascarene Islands (27 taxa), New Zealand (22 taxa) and French Polynesia (19 taxa). The major proximate drivers of extinction for both species and subspecies are invasive alien species (58.2% and 50.7% of species and subspecies, respectively), hunting (52.4% and 18.8%) and agriculture, including non-timber crops and livestock farming (14.9% and 31.9%). In general, the distribution and drivers of subspecific extinctions are similar to those for species extinctions. However, our finding that, when subspecies are considered, the extinction rate has accelerated in recent decades is both novel and alarming.


Assuntos
Aves , Extinção Biológica , Animais , Austrália , Conservação dos Recursos Naturais , Nova Zelândia , Polinésia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA