Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 266
Filtrar
2.
IEEE J Biomed Health Inform ; 28(6): 3457-3465, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38557616

RESUMO

A novel method for tracking the tidal volume (TV) from electrocardiogram (ECG) is presented. The method is based on the amplitude of ECG-derived respiration (EDR) signals. Three different morphology-based EDR signals and three different amplitude estimation methods have been studied, leading to a total of 9 amplitude-EDR (AEDR) signals per ECG channel. The potential of these AEDR signals to track the changes in TV was analyzed. These methods do not need a calibration process. In addition, a personalized-calibration approach for TV estimation is proposed, based on a linear model that uses all AEDR signals from a device. All methods have been validated with two different ECG devices: a commercial Holter monitor, and a custom-made wearable armband. The lowest errors for the personalized-calibration methods, compared to a reference TV, were -3.48% [-17.41% / 12.93%] (median [first quartile / third quartile]) for the Holter monitor, and 0.28% [-10.90% / 17.15%] for the armband. On the other hand, medians of correlations to the reference TV were higher than 0.8 for uncalibrated methods, while they were higher than 0.9 for personal-calibrated methods. These results suggest that TV changes can be tracked from ECG using either a conventional (Holter) setup, or our custom-made wearable armband. These results also suggest that the methods are not as reliable in applications that induce small changes in TV, but they can be potentially useful for detecting large changes in TV, such as sleep apnea/hypopnea and/or exacerbations of a chronic respiratory disease.


Assuntos
Eletrocardiografia Ambulatorial , Processamento de Sinais Assistido por Computador , Volume de Ventilação Pulmonar , Dispositivos Eletrônicos Vestíveis , Humanos , Eletrocardiografia Ambulatorial/instrumentação , Eletrocardiografia Ambulatorial/métodos , Volume de Ventilação Pulmonar/fisiologia , Masculino , Adulto , Feminino , Eletrocardiografia/métodos , Eletrocardiografia/instrumentação , Pessoa de Meia-Idade , Adulto Jovem
3.
Comput Biol Med ; 170: 108070, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38330822

RESUMO

We explored the non-invasive evaluation of the sympathetic nervous system (SNS) by employing two distinct physiological signals: skin sympathetic nerve activity (SKNA), extracted from electrocardiogram (ECG) signals, and electrodermal activity (EDA), a well-studied marker in the context of the SNS assessment. Our investigation focused on cognitive stress and pain; two conditions closely associated with the SNS. We sought to determine if the information and dynamics of EDA could be derived from the novel SKNA signal. To this end, ECG and EDA signals were recorded simultaneously during three experiments aimed at sympathetic stimulation, Valsalva maneuver (VM), Stroop test, and thermal-grill pain test. We calculated the integral area under the rectified SKNA signal (iSKNA) and decomposed the EDA signal to its phasic component (EDAphasic). An average delay of more than 4.6 s was observed in the onset of EDAphasic bursts compared to their corresponding iSKNA bursts. After shifting the EDAphasic segments by the extent of this delay and smoothing the corresponding iSKNA bursts, our results revealed a strong average correlation coefficient of 0.85±0.14 between the iSKNA and EDAphasic bursts, indicating a noteworthy similarity between the two signals. We also reconstructed the EDA signals with time-varying sympathetic (TVSymp) and modified TVSymp (MTVSymp) methods. Then we extracted the following features from iSKNA, EDAphasic, TVSymp, and MTVSymp signals: peak amplitude, average amplitude (aSKNA), standard deviation (vSKNA), and the cumulative duration during which the signals had higher amplitudes than a specified threshold (HaSKNA). A strong average correlation of 0.89±0.18 was found between vSKNA and subjects' self-rated pain levels during the pain test. Our statistical analysis also included applying Linear Mixed-Effects Models to check if there were significant differences in features across baseline and different levels of SNS stimulation. We then assessed the discriminating power of the features using Area Under the Receiver Operating Characteristic Curve (AUROC) and Fisher's Ratio. Finally, using all the four EDA features, a multi-layer perceptron (MLP) classifier reached the classification accuracies 95.56%, 89.29%, and 67.88% for the VM, Stroop, and thermal-grill pain control and stimulation classes. On the other hand, the highest classification accuracies based on SKNA features were achieved using K-nearest neighbors (KNN) (98.89%), KNN (89.29%), and MLP (95.11%) classifiers for the same experiments. Our comparative analysis showed the feasibility of SKNA as a novel tool for assessing the SNS with accurate classification capability, with a faster onset of amplitude increase in response to SNS activity, compared to EDA.


Assuntos
Resposta Galvânica da Pele , Sistema Nervoso Simpático , Humanos , Sistema Nervoso Simpático/fisiologia , Dor , Eletrocardiografia/métodos , Cognição
4.
IEEE Trans Biomed Eng ; 71(2): 456-466, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37682653

RESUMO

OBJECTIVE: We propose an efficient approach based on a convolutional denoising autoencoder (CDA) network to reduce motion and noise artifacts (MNA) from corrupted atrial fibrillation (AF) and non-AF photoplethysmography (PPG) data segments so that an accurate PPG-signal-derived heart rate can be obtained. Our method's main innovation is the optimization of the CDA performance for both rhythms using more AF than non-AF data for training the AF-specific CDA model and vice versa for the non-AF CDA network. METHODS: To evaluate this unconventional training scheme, our proposed network was trained and tested on 25-sec PPG data segments from 48 subjects from two different databases-the Pulsewatch dataset and Stanford University's publicly available PPG dataset. In total, our dataset contains 10,773 data segments: 7,001 segments for training and 3,772 independent segments from out-of-sample subjects for testing. RESULTS: Using real-life corrupted PPG segments, our approach significantly reduced the average heart rate root mean square error (RMSE) of the reconstructed PPG segments by 45.74% and 23% compared to the corrupted non-AF and AF data, respectively. Further, our approach exhibited lower RMSE, and higher sensitivity and PPV for detected peaks compared to the reconstructed data produced by the alternative methods. CONCLUSION: These results show the promise of our approach as a reliable denoising method, which should be used prior to AF detection algorithms for an accurate cardiac health monitoring involving wearable devices. SIGNIFICANCE: PPG signals collected from wearables are vulnerable to MNA, which limits their use as a reliable measurement, particularly in uncontrolled real-life environments.


Assuntos
Fibrilação Atrial , Fotopletismografia , Humanos , Fotopletismografia/métodos , Fibrilação Atrial/diagnóstico , Frequência Cardíaca/fisiologia , Monitorização Fisiológica , Movimento (Física) , Algoritmos , Processamento de Sinais Assistido por Computador , Artefatos
5.
Adv Sci (Weinh) ; 11(11): e2306826, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38161217

RESUMO

Motivated by the unexplored potential of in vitro neural systems for computing and by the corresponding need of versatile, scalable interfaces for multimodal interaction, an accurate, modular, fully customizable, and portable recording/stimulation solution that can be easily fabricated, robustly operated, and broadly disseminated is presented. This approach entails a reconfigurable platform that works across multiple industry standards and that enables a complete signal chain, from neural substrates sampled through micro-electrode arrays (MEAs) to data acquisition, downstream analysis, and cloud storage. Built-in modularity supports the seamless integration of electrical/optical stimulation and fluidic interfaces. Custom MEA fabrication leverages maskless photolithography, favoring the rapid prototyping of a variety of configurations, spatial topologies, and constitutive materials. Through a dedicated analysis and management software suite, the utility and robustness of this system are demonstrated across neural cultures and applications, including embryonic stem cell-derived and primary neurons, organotypic brain slices, 3D engineered tissue mimics, concurrent calcium imaging, and long-term recording. Overall, this technology, termed "mind in vitro" to underscore the computing inspiration, provides an end-to-end solution that can be widely deployed due to its affordable (>10× cost reduction) and open-source nature, catering to the expanding needs of both conventional and unconventional electrophysiology.


Assuntos
Encéfalo , Neurônios , Eletrodos , Encéfalo/fisiologia , Neurônios/fisiologia , Estimulação Elétrica , Fenômenos Eletrofisiológicos/fisiologia
6.
Front Digit Health ; 5: 1243959, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38125757

RESUMO

Background: Increasing ownership of smartphones among Americans provides an opportunity to use these technologies to manage medical conditions. We examine the influence of baseline smartwatch ownership on changes in self-reported anxiety, patient engagement, and health-related quality of life when prescribed smartwatch for AF detection. Method: We performed a post-hoc secondary analysis of the Pulsewatch study (NCT03761394), a clinical trial in which 120 participants were randomized to receive a smartwatch-smartphone app dyad and ECG patch monitor compared to an ECG patch monitor alone to establish the accuracy of the smartwatch-smartphone app dyad for detection of AF. At baseline, 14 days, and 44 days, participants completed the Generalized Anxiety Disorder-7 survey, the Health Survey SF-12, and the Consumer Health Activation Index. Mixed-effects linear regression models using repeated measures with anxiety, patient activation, physical and mental health status as outcomes were used to examine their association with smartwatch ownership at baseline. Results: Ninety-six participants, primarily White with high income and tertiary education, were randomized to receive a study smartwatch-smartphone dyad. Twenty-four (25%) participants previously owned a smartwatch. Compared to those who did not previously own a smartwatch, smartwatch owners reported significant greater increase in their self-reported physical health (ß = 5.07, P < 0.05), no differences in anxiety (ß = 0.92, P = 0.33), mental health (ß = -2.42, P = 0.16), or patient activation (ß = 1.86, P = 0.54). Conclusions: Participants who own a smartwatch at baseline reported a greater positive change in self-reported physical health, but not in anxiety, patient activation, or self-reported mental health over the study period.

7.
Nano Lett ; 23(23): 10971-10982, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-37991895

RESUMO

Nanoparticles have emerged as potential transporters of drugs targeting Alzheimer's disease (AD), but their design should consider the blood-brain barrier (BBB) integrity and neuroinflammation of the AD brain. This study presents that aging is a significant factor for the brain localization and retention of nanoparticles, which we engineered to bind with reactive astrocytes and activated microglia. We assembled 200 nm-diameter particles using a block copolymer of poly(lactic-co-glycolic acid) (PLGA) and CD44-binding hyaluronic acid (HA). The resulting PLGA-b-HA nanoparticles displayed increased binding to CD44-expressing reactive astrocytes and activated microglia. Upon intravascular injection, nanoparticles were localized to the hippocampi of both APP/PS1 AD model mice and their control littermates at 13-16 months of age due to enhanced transvascular transport through the leaky BBB. No particles were found in the hippocampi of young adult mice. These findings demonstrate the brain localization of nanoparticles due to aging-induced BBB breakdown regardless of AD pathology.


Assuntos
Doença de Alzheimer , Nanopartículas , Camundongos , Animais , Doença de Alzheimer/metabolismo , Camundongos Transgênicos , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/metabolismo
8.
Cardiovasc Digit Health J ; 4(4): 118-125, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37600446

RESUMO

Background: The detection of atrial fibrillation (AF) in stroke survivors is critical to decreasing the risk of recurrent stroke. Smartwatches have emerged as a convenient and accurate means of AF diagnosis; however, the impact on critical patient-reported outcomes, including anxiety, engagement, and quality of life, remains ill defined. Objectives: To examine the association between smartwatch prescription for AF detection and the patient-reported outcomes of anxiety, patient activation, and self-reported health. Methods: We used data from the Pulsewatch trial, a 2-phase randomized controlled trial that included participants aged 50 years or older with a history of ischemic stroke. Participants were randomized to use either a proprietary smartphone-smartwatch app for 30 days of AF monitoring or no cardiac rhythm monitoring. Validated surveys were deployed before and after the 30-day study period to assess anxiety, patient activation, and self-rated physical and mental health. Logistic regression and generalized estimation equations were used to examine the association between smartwatch prescription for AF monitoring and changes in the patient-reported outcomes. Results: A total of 110 participants (mean age 64 years, 41% female, 91% non-Hispanic White) were studied. Seventy percent of intervention participants were novice smartwatch users, as opposed to 84% of controls, and there was no significant difference in baseline rates of anxiety, activation, or self-rated health between the 2 groups. The incidence of new AF among smartwatch users was 6%. Participants who were prescribed smartwatches did not have a statistically significant change in anxiety, activation, or self-reported health as compared to those who were not prescribed smartwatches. The results held even after removing participants who received an AF alert on the watch. Conclusion: The prescription of smartwatches to stroke survivors for AF monitoring does not adversely affect key patient-reported outcomes. Further research is needed to better inform the successful deployment of smartwatches in clinical practice.

9.
IEEE J Biomed Health Inform ; 27(9): 4250-4260, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37399159

RESUMO

The current method for assessing pain in clinical practice is subjective and relies on self-reported scales. An objective and accurate method of pain assessment is needed for physicians to prescribe the proper medication dosage, which could reduce addiction to opioids. Hence, many works have used electrodermal activity (EDA) as a suitable signal for detecting pain. Previous studies have used machine learning and deep learning to detect pain responses, but none have used a sequence-to-sequence deep learning approach to continuously detect acute pain from EDA signals, as well as accurate detection of pain onset. In this study, we evaluated deep learning models including 1-dimensional convolutional neural networks (1D-CNN), long short-term memory networks (LSTM), and three hybrid CNN-LSTM architectures for continuous pain detection using phasic EDA features. We used a database consisting of 36 healthy volunteers who underwent pain stimuli induced by a thermal grill. We extracted the phasic component, phasic drivers, and time-frequency spectrum of the phasic EDA (TFS-phEDA), which was found to be the most discerning physiomarker. The best model was a parallel hybrid architecture of a temporal convolutional neural network and a stacked bi-directional and uni-directional LSTM, which obtained a F1-score of 77.8% and was able to correctly detect pain in 15-second signals. The model was evaluated using 37 independent subjects from the BioVid Heat Pain Database and outperformed other approaches in recognizing higher pain levels compared to baseline with an accuracy of 91.5%. The results show the feasibility of continuous pain detection using deep learning and EDA.


Assuntos
Dor Aguda , Aprendizado Profundo , Humanos , Resposta Galvânica da Pele , Redes Neurais de Computação , Aprendizado de Máquina
10.
Cardiol Cardiovasc Med ; 7(2): 97-107, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37476150

RESUMO

Wrist-based wearables have been FDA approved for AF detection. However, the health behavior impact of false AF alerts from wearables on older patients at high risk for AF are not known. In this work, we analyzed data from the Pulsewatch (NCT03761394) study, which randomized patients (≥50 years) with history of stroke or transient ischemic attack to wear a patch monitor and a smartwatch linked to a smartphone running the Pulsewatch application vs to only the cardiac patch monitor over 14 days. At baseline and 14 days, participants completed validated instruments to assess for anxiety, patient activation, perceived mental and physical health, chronic symptom management self-efficacy, and medicine adherence. We employed linear regression to examine associations between false AF alerts with change in patient-reported outcomes. Receipt of false AF alerts was related to a dose-dependent decline in self-perceived physical health and levels of disease self-management. We developed a novel convolutional denoising autoencoder (CDA) to remove motion and noise artifacts in photoplethysmography (PPG) segments to optimize AF detection, which substantially reduced the number of false alerts. A promising approach to avoid negative impact of false alerts is to employ artificial intelligence driven algorithms to improve accuracy.

11.
Struct Dyn ; 10(3): 034103, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37388296

RESUMO

Time-resolved x-ray liquidography (TRXL) is a potent method for investigating the structural dynamics of chemical and biological reactions in the liquid phase. It has enabled the extraction of detailed structural aspects of various dynamic processes, the molecular structures of intermediates, and kinetics of reactions across a wide range of systems, from small molecules to proteins and nanoparticles. Proper data analysis is key to extracting the information of the kinetics and structural dynamics of the studied system encrypted in the TRXL data. In typical TRXL data, the signals from solute scattering, solvent scattering, and solute-solvent cross scattering are mixed in the q-space, and the solute kinetics and solvent hydrodynamics are mixed in the time domain, thus complicating the data analysis. Various methods developed so far generally require prior knowledge of the molecular structures of candidate species involved in the reaction. Because such information is often unavailable, a typical data analysis often involves tedious trial and error. To remedy this situation, we have developed a method named projection to extract the perpendicular component (PEPC), capable of removing the contribution of solvent kinetics from TRXL data. The resulting data then contain only the solute kinetics, and, thus, the solute kinetics can be easily determined. Once the solute kinetics is determined, the subsequent data analysis to extract the structural information can be performed with drastically improved convenience. The application of the PEPC method is demonstrated with TRXL data from the photochemistry of two molecular systems: [Au(CN)2-]3 in water and CHI3 in cyclohexane.

12.
Neural Netw ; 165: 562-595, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37364469

RESUMO

Data visualization is critical to unraveling hidden information from complex and high-dimensional data. Interpretable visualization methods are critical, especially in the biology and medical fields, however, there are limited effective visualization methods for large genetic data. Current visualization methods are limited to lower-dimensional data and their performance suffers if there is missing data. In this study, we propose a literature-based visualization method to reduce high-dimensional data without compromising the dynamics of the single nucleotide polymorphisms (SNP) and textual interpretability. Our method is innovative because it is shown to (1) preserves both global and local structures of SNP while reducing the dimension of the data using literature text representations, and (2) enables interpretable visualizations using textual information. For performance evaluations, we examined the proposed approach to classify various classification categories including race, myocardial infarction event age groups, and sex using several machine learning models on the literature-derived SNP data. We used visualization approaches to examine clustering of data as well as quantitative performance metrics for the classification of the risk factors examined above. Our method outperformed all popular dimensionality reduction and visualization methods for both classification and visualization, and it is robust against missing and higher-dimensional data. Moreover, we found it feasible to incorporate both genetic and other risk information obtained from literature with our method.


Assuntos
Visualização de Dados , Infarto do Miocárdio , Humanos , Redes Neurais de Computação , Aprendizado de Máquina , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/genética
13.
Artif Intell Med ; 140: 102548, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37210152

RESUMO

BACKGROUND: Deep learning has been successfully applied to ECG data to aid in the accurate and more rapid diagnosis of acutely decompensated heart failure (ADHF). Previous applications focused primarily on classifying known ECG patterns in well-controlled clinical settings. However, this approach does not fully capitalize on the potential of deep learning, which directly learns important features without relying on a priori knowledge. In addition, deep learning applications to ECG data obtained from wearable devices have not been well studied, especially in the field of ADHF prediction. METHODS: We used ECG and transthoracic bioimpedance data from the SENTINEL-HF study, which enrolled patients (≥21 years) who were hospitalized with a primary diagnosis of heart failure or with ADHF symptoms. To build an ECG-based prediction model of ADHF, we developed a deep cross-modal feature learning pipeline, termed ECGX-Net, that utilizes raw ECG time series and transthoracic bioimpedance data from wearable devices. To extract rich features from ECG time series data, we first adopted a transfer learning approach in which ECG time series were transformed into 2D images, followed by feature extraction using ImageNet-pretrained DenseNet121/VGG19 models. After data filtering, we applied cross-modal feature learning in which a regressor was trained with ECG and transthoracic bioimpedance. Then, we concatenated the DenseNet121/VGG19 features with the regression features and used them to train a support vector machine (SVM) without bioimpedance information. RESULTS: The high-precision classifier using ECGX-Net predicted ADHF with a precision of 94 %, a recall of 79 %, and an F1-score of 0.85. The high-recall classifier with only DenseNet121 had a precision of 80 %, a recall of 98 %, and an F1-score of 0.88. We found that ECGX-Net was effective for high-precision classification, while DenseNet121 was effective for high-recall classification. CONCLUSION: We show the potential for predicting ADHF from single-channel ECG recordings obtained from outpatients, enabling timely warning signs of heart failure. Our cross-modal feature learning pipeline is expected to improve ECG-based heart failure prediction by handling the unique requirements of medical scenarios and resource limitations.


Assuntos
Insuficiência Cardíaca , Dispositivos Eletrônicos Vestíveis , Humanos , Insuficiência Cardíaca/diagnóstico , Eletrocardiografia , Máquina de Vetores de Suporte
14.
JMIR Cardio ; 7: e41691, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36780211

RESUMO

BACKGROUND: The prevalence of atrial fibrillation (AF) increases with age and can lead to stroke. Therefore, older adults may benefit the most from AF screening. However, older adult populations tend to lag more than younger groups in the adoption of, and comfort with, the use of mobile health (mHealth) apps. Furthermore, although mobile apps that can detect AF are available to the public, most are designed for intermittent AF detection and for younger users. No app designed for long-term AF monitoring has released detailed system design specifications that can handle large data collections, especially in this age group. OBJECTIVE: This study aimed to design an innovative smartwatch-based AF monitoring mHealth solution in collaboration with older adult participants and clinicians. METHODS: The Pulsewatch system is designed to link smartwatches and smartphone apps, a website for data verification, and user data organization on a cloud server. The smartwatch in the Pulsewatch system is designed to continuously monitor the pulse rate with embedded AF detection algorithms, and the smartphone in the Pulsewatch system is designed to serve as the data-transferring hub to the cloud storage server. RESULTS: We implemented the Pulsewatch system based on the functionality that patients and caregivers recommended. The user interfaces of the smartwatch and smartphone apps were specifically designed for older adults at risk for AF. We improved our Pulsewatch system based on feedback from focus groups consisting of patients with stroke and clinicians. The Pulsewatch system was used by the intervention group for up to 6 weeks in the 2 phases of our randomized clinical trial. At the conclusion of phase 1, 90 trial participants who had used the Pulsewatch app and smartwatch for 14 days completed a System Usability Scale to assess the usability of the Pulsewatch system; of 88 participants, 56 (64%) endorsed that the smartwatch app is "easy to use." For phases 1 and 2 of the study, we collected 9224.4 hours of smartwatch recordings from the participants. The longest recording streak in phase 2 was 21 days of consecutive recordings out of the 30 days of data collection. CONCLUSIONS: This is one of the first studies to provide a detailed design for a smartphone-smartwatch dyad for ambulatory AF monitoring. In this paper, we report on the system's usability and opportunities to increase the acceptability of mHealth solutions among older patients with cognitive impairment. TRIAL REGISTRATION: ClinicalTrials.gov NCT03761394; https://www.clinicaltrials.gov/ct2/show/NCT03761394. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR2-10.1016/j.cvdhj.2021.07.002.

15.
Comput Biol Med ; 155: 106695, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36805230

RESUMO

Dental pain invokes the sympathetic nervous system, which can be measured by electrodermal activity (EDA). In the dental clinic, accurate quantification of pain is needed because it could enable optimized drug-dose treatments, thereby potentially reducing drug addiction. However, a confounding factor is that during pain there is also lingering residual stress, hence, both contribute to the EDA response. Therefore, we investigated whether EDA can differentiate stress from pain during dental examination. The use of electrical pulp test (EPT) is an ideal approach to tease out the dynamics of stress and mimic pain with lingering residual stress. Once the electrical sensation is felt and reaches a critical current threshold, the subject removes the probe from their tooth, hence, this stage of data represents largely EPT stimulus and the residual stress-induced EDA response is smaller. EPT was performed on necrotic and vital teeth in fifty-one subjects. We defined four different data groups of reactions based on each individual's EPT intensity level expectation based on the visual analog scale (VAS) of their baseline trial, as follows: mild stress, mild stress + EPT, strong stress, and strong stress + EPT. EDA-derived features exhibited significant difference between residual lingering stress + EPT groups and stress groups. We obtained 84.6% accuracy with 76.2% sensitivity and 86.8% specificity with multilayer perceptron in differentiating between pure-stress groups vs. stress + EPT groups. Moreover, EPT induced much greater EDA amplitude and faster response than stress. Our finding suggests that our machine learning approach can discriminate between stress and EPT stimulation in EDA signals.


Assuntos
Resposta Galvânica da Pele , Dor , Humanos , Clínicas Odontológicas , Sistema Nervoso Simpático/fisiologia , Aprendizado de Máquina
16.
Nature ; 614(7946): 144-152, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36509107

RESUMO

Cell adhesion molecules are ubiquitous in multicellular organisms, specifying precise cell-cell interactions in processes as diverse as tissue development, immune cell trafficking and the wiring of the nervous system1-4. Here we show that a wide array of synthetic cell adhesion molecules can be generated by combining orthogonal extracellular interactions with intracellular domains from native adhesion molecules, such as cadherins and integrins. The resulting molecules yield customized cell-cell interactions with adhesion properties that are similar to native interactions. The identity of the intracellular domain of the synthetic cell adhesion molecules specifies interface morphology and mechanics, whereas diverse homotypic or heterotypic extracellular interaction domains independently specify the connectivity between cells. This toolkit of orthogonal adhesion molecules enables the rationally programmed assembly of multicellular architectures, as well as systematic remodelling of native tissues. The modularity of synthetic cell adhesion molecules provides fundamental insights into how distinct classes of cell-cell interfaces may have evolved. Overall, these tools offer powerful abilities for cell and tissue engineering and for systematically studying multicellular organization.


Assuntos
Moléculas de Adesão Celular , Comunicação Celular , Biologia Sintética , Caderinas/química , Adesão Celular , Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/metabolismo , Integrinas/química , Biologia Sintética/métodos , Domínios Proteicos , Sítios de Ligação , Engenharia Celular
17.
Int Endod J ; 56(3): 356-368, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36367715

RESUMO

AIMS: To explore whether electrodermal activity (EDA) can serve as a complementary tool for pulpal diagnosis (Aim 1) and an objective metric to assess dental pain before and after local anaesthesia (Aim 2). METHODOLOGY: A total of 53 subjects (189 teeth) and 14 subjects (14 teeth) were recruited for Aim 1 and Aim 2, respectively. We recorded EDA using commercially available devices, PowerLab and Galvanic Skin Response (GSR) Amplifier, in conjunction with cold and electric pulp testing (EPT). Participants rated their level of sensation on a 0-10 visual analogue scale (VAS) after each test. We recorded EPT-stimulated EDA activity before and after the administration of local anaesthesia for participants who required root canal treatment (RCT) due to painful pulpitis. The raw data were converted to the time-varying index of sympathetic activity (TVSymp), a sensitive and specific parameter of EDA. Statistical analysis was performed using Python 3.6 and its Scikit-post hoc library. RESULTS: Electrodermal activity was upregulated by the stimuli of cold and EPT testing in the normal pulp. TVSymp signals were significantly increased in vital pulp compared to necrotic pulp by both cold test and EPT. Teeth that exhibited intensive sensitivity to cold with or without lingering pain had increased peak numbers of TVSymp than teeth with mild sensation to cold. Pre- and post-anaesthesia EDA activity and VAS scores were recorded in patients with painful pulpitis. Post-anaesthesia EDA signals were significantly lower compared to pre-anaesthesia levels. Approximately 71% of patients (10 of 14 patients) experienced no pain during treatment and reported VAS score of 0 or 1. The majority of patients (10 of 14) showed a reduction of TVSymp after the administration of anaesthesia. Two of three patients who experienced increased pain during RCT (post-treatment VAS > pre-treatment VAS) exhibited increased post-anaesthesia TVSymp. CONCLUSIONS: Our data show promising results for using EDA in pulpal diagnosis and for assessing dental pain. Whilst our testing was limited to subjects who had adequate communication skills, our future goal is to be able to use this technology to aid in the endodontic diagnosis of patients who have limited communication ability.


Assuntos
Pulpite , Humanos , Pulpite/diagnóstico , Pulpite/terapia , Resposta Galvânica da Pele , Medição da Dor/métodos , Dor/diagnóstico , Dor/etiologia , Polpa Dentária
18.
Sensors (Basel) ; 22(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36433449

RESUMO

Bio-signals are being increasingly used for the assessment of pathophysiological conditions including pain, stress, fatigue, and anxiety. For some approaches, a single signal is not sufficient to provide a comprehensive diagnosis; however, there is a growing consensus that multimodal approaches allow higher sensitivity and specificity. For instance, in visceral pain subjects, the autonomic activation can be inferred using electrodermal activity (EDA) and heart rate variability derived from the electrocardiogram (ECG), but including the muscle activation detected from the surface electromyogram (sEMG) can better differentiate the disease that causes the pain. There is no wearable device commercially capable of collecting these three signals simultaneously. This paper presents the validation of a novel multimodal low profile wearable data acquisition device for the simultaneous collection of EDA, ECG, and sEMG signals. The device was validated by comparing its performance to laboratory-scale reference devices. N = 20 healthy subjects were recruited to participate in a four-stage study that exposed them to an array of cognitive, orthostatic, and muscular stimuli, ensuring the device is sensitive to a range of stressors. Time and frequency domain analyses for all three signals showed significant similarities between our device and the reference devices. Correlation of sEMG metrics ranged from 0.81 to 0.95 and EDA/ECG metrics showed few instances of significant difference in trends between our device and the references. With only minor observed differences, we demonstrated the ability of our device to collect EDA, sEMG, and ECG signals. This device will enable future practical and impactful advances in the field of chronic pain and stress measurement and can confidently be implemented in related studies.


Assuntos
Resposta Galvânica da Pele , Dispositivos Eletrônicos Vestíveis , Humanos , Eletromiografia , Eletrocardiografia , Dor
20.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 1981-1984, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36085715

RESUMO

Prolonged sleepiness can lead to impairment of cognitive and physical performance and may cause unfortunate accidents. Speech signals are easily accessible using a simple microphone or other means, hence, automated approaches for accurate sleepiness detection from speech signals are desired to prevent degradation in human performance and accidental injury. Sleepiness is known to affect acoustic patterns of speech so that they are different from those of normal speech, and this change is also independent of the language being spoken. To date, there have been no studies examining linguistic-independent sleepy speech detection. We used two different languages, English and German, to detect sleepy speech, where the former was used to train/validate and the latter to test the effectiveness of machine and deep learning models. Specifically, we trained ResNet50, a deep learning model, and five machine learning models with relevant vocal features. Speech data segments from three English-speaking subjects were used for training the model and segments from an English-speaking subject were used for validation. We then tested ResNet50 and the five different machine-learning models using speech data segments from one German-speaking subject. Deep learning far outperformed all of the machine learning approaches. The accuracy, sensitivity, specificity, and geometric mean values were found to be 0.96, 0.92, 0.99, and 0.95, respectively, using ResNet50 on the test data. Our preliminary results suggest that sleepiness can be accurately detected independently from linguistic speech. Clinical Relevance-It is not known if sleepiness can be detected regardless of the language spoken. Our results show the feasibility of accurate sleepiness detection using deep learning even when tested with a different language than trained on.


Assuntos
Sonolência , Fala , Acústica , Humanos , Idioma , Linguística
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...