Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 8(7): e09799, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35855988

RESUMO

Kenya's catchments has both natural and disturbed environments. Within these environments, there has been interaction between hydrological, physical and ecological characteristics. Therefore, impacts of Land Use Land Cover (LULC) change on surface and sub - surface hydrology needs to be well understood due to the increasing population competing for scarce natural resources such as water, trees and forest land. The water balance components' spatial and temporal dynamics in relationship to the LULC change between 2003 and 2018 in the Lower Nzoia Sub - Catchment (LNSC) in Kenya was therefore assessed. Landsat data with 30 m (m) spatial resolution was used in understanding LULC dynamics of the study area using Supervised Classification Approach (Interactive Classification Method) in ArcGIS 10.5. After landsat image classification, key water balance components including; surface runoff (SURFQ), lateral flow (LATQ), groundwater recharge (BASEQ), deep acquifer recharge (DEEPQ), evapotranspiration (ET) and groundwater revap (REVAP) for years 2003 and 2018 were estimated using SWAT model in ArcSWAT. The overall accuracies for 2003 and 2018 classified images were 75.9% and 98.9% respectively which are showing good values. The results of the study showed that agricultural land coverage reduced from 83.1% in 2003 to 78.6% in 2018. Rangeland on the hand increased from 6.3% to 9.8% while urban/built - up area increasing from 10.6% to 11.6%. The annual water balance components from the LULC distribution of the two time periods shows that ET reduced, SURFQ increased, BASEQ reduced, DEEPQ reduced, LATQ reduced and REVAP reduced. At catchment level, results show that 2018 had a higher water balance than 2003 which can partly be explained by land cover decrease. The relationship between rainfall distribution, Land Surface Temperature (LST) and LULC change were further compared. At the same time, the study found out that there is limited focus to date on rural communities climate adaptive capacity. Hence, water institutions in the sub - catchment such as Water Resources Authority (WRA) are yet to fully mainstream adaptive capacity into their organizational structure and policies.

2.
J Environ Public Health ; 2021: 4258816, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34812262

RESUMO

Air pollution is one of the most important environmental and public health concerns worldwide. Urban air pollution has been increasing since the industrial revolution due to rapid industrialization, mushrooming of cities, and greater dependence on fossil fuels in urban centers. Particulate matter (PM) is considered to be one of the main aerosol pollutants that causes a significant adverse impact on human health. Low-cost air quality sensors have attracted attention recently to curb the lack of air quality data which is essential in assessing the health impacts of air pollutants and evaluating land use policies. This is mainly due to their lower cost in comparison to the conventional methods. The aim of this study was to assess the spatial extent and distribution of ambient airborne particulate matter with an aerodynamic diameter less than 2.5 µm (PM2.5) in Nairobi City County. Seven sites were selected for monitoring based on the land use type: high- and low-density residential, industrial, agricultural, commercial, road transport, and forest reserve areas. Calibrated low-cost sensors and cyclone samplers were used to monitor PM2.5 concentration levels and gravimetric measurements for elemental composition of PM2.5, respectively. The sensor percentage accuracy for calibration ranged from 81.47% to 98.60%. The highest 24-hour average concentration of PM2.5 was observed in Viwandani, an industrial area (111.87 µg/m³), and the lowest concentration at Karura (21.25 µg/m³), a forested area. The results showed a daily variation in PM2.5 concentration levels with the peaks occurring in the morning and the evening due to variation in anthropogenic activities and the depth of the atmospheric boundary layer. Therefore, the study suggests that residents in different selected land use sites are exposed to varying levels of PM2.5 pollution on a regular basis, hence increasing the potential of causing long-term health effects.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental , Humanos , Quênia , Material Particulado/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...