Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 29(41): 415302, 2018 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-30027889

RESUMO

This paper describes a new, low-cost, top-down fabrication process, which makes it possible to define nanowire field effect transistor arrays with different numbers of nanowires simultaneously and systematically comparing their electrical performance. The main feature of this process is a developed bilayer photoresist pattern with a retrograde profile, which enables the modification of the nanowire in width, length, height and the number of transistor channels. The approach is compatible with low-cost manufacture without electron beam lithography, and benefits from process temperatures below 190 °C. Process reliability has been investigated by scanning electron microscopy, transmission electron microscopy and atomic force microscopy. Electrical measurements demonstrate enhancement mode transistors, which show a scalable correlation between the number of nanowires and the electrical characteristics. Devices with 100 nanowires exhibit the best performance with a high field effect mobility of 11.0 cm2 Vs-1, on/off current ratio of 3.97 × 107 and subthreshold swing of 0.66 V dec-1.

2.
J Dent Res ; 94(9): 1303-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26056055

RESUMO

Acidogenic bacteria within dental plaque biofilms are the causative agents of caries. Consequently, maintenance of a healthy oral environment with efficient biofilm removal strategies is important to limit caries, as well as halt progression to gingivitis and periodontitis. Recently, a novel cleaning device has been described using an ultrasonically activated stream (UAS) to generate a cavitation cloud of bubbles in a freely flowing water stream that has demonstrated the capacity to be effective at biofilm removal. In this study, UAS was evaluated for its ability to remove biofilms of the cariogenic pathogen Streptococcus mutans UA159, as well as Actinomyces naeslundii ATCC 12104 and Streptococcus oralis ATCC 9811, grown on machine-etched glass slides to generate a reproducible complex surface and artificial teeth from a typodont training model. Biofilm removal was assessed both visually and microscopically using high-speed videography, confocal scanning laser microscopy (CSLM), and scanning electron microscopy (SEM). Analysis by CSLM demonstrated a statistically significant 99.9% removal of S. mutans biofilms exposed to the UAS for 10 s, relative to both untreated control biofilms and biofilms exposed to the water stream alone without ultrasonic activation (P < 0.05). The water stream alone showed no statistically significant difference in removal compared with the untreated control (P = 0.24). High-speed videography demonstrated a rapid rate (151 mm(2) in 1 s) of biofilm removal. The UAS was also highly effective at S. mutans, A. naeslundii, and S. oralis biofilm removal from machine-etched glass and S. mutans from typodont surfaces with complex topography. Consequently, UAS technology represents a potentially effective method for biofilm removal and improved oral hygiene.


Assuntos
Biofilmes , Ultrassom , Água , Placa Dentária/microbiologia , Humanos , Microscopia Eletrônica de Varredura , Streptococcus mutans/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...