Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37350453

RESUMO

In this article, we analyze the dynamics of the non-linear tumor-immune delayed (TID) model illustrating the interaction among tumor cells and the immune system (cytotoxic T lymphocytes, T helper cells), where the delays portray the times required for molecule formation, cell growth, segregation, and transportation, among other factors by exploiting the knacks of soft computing paradigm utilizing neural networks with back propagation Levenberg Marquardt approach (NNLMA). The governing differential delayed system of non-linear TID, which comprised the densities of the tumor population, cytotoxic T lymphocytes and T helper cells, is represented by non-linear delay ordinary differential equations with three classes. The baseline data is formulated by exploiting the explicit Runge-Kutta method (RKM) by diverting the transmutation rate of Tc to Th of the Tc population, transmutation rate of Tc to Th of the Th population, eradication of tumor cells through Tc cells, eradication of tumor cells through Th cells, Tc cells' natural mortality rate, Th cells' natural mortality rate as well as time delay. The approximated solution of the non-linear TID model is determined by randomly subdividing the formulated data samples for training, testing, as well as validation sets in the network formulation and learning procedures. The strength, reliability, and efficacy of the designed NNLMA for solving non-linear TID model are endorsed by small/negligible absolute errors, error histogram studies, mean squared errors based convergence and close to optimal modeling index for regression measurements.

2.
Front Public Health ; 10: 869238, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812486

RESUMO

Early diagnosis, prioritization, screening, clustering, and tracking of patients with COVID-19, and production of drugs and vaccines are some of the applications that have made it necessary to use a new style of technology to involve, manage, and deal with this epidemic. Strategies backed by artificial intelligence (A.I.) and the Internet of Things (IoT) have been undeniably effective to understand how the virus works and prevent it from spreading. Accordingly, the main aim of this survey is to critically review the ML, IoT, and the integration of IoT and ML-based techniques in the applications related to COVID-19, from the diagnosis of the disease to the prediction of its outbreak. According to the main findings, IoT provided a prompt and efficient approach to tracking the disease spread. On the other hand, most of the studies developed by ML-based techniques aimed at the detection and handling of challenges associated with the COVID-19 pandemic. Among different approaches, Convolutional Neural Network (CNN), Support Vector Machine, Genetic CNN, and pre-trained CNN, followed by ResNet have demonstrated the best performances compared to other methods.


Assuntos
COVID-19 , Internet das Coisas , Aprendizado de Máquina , Inteligência Artificial , COVID-19/epidemiologia , Humanos , Redes Neurais de Computação , Pandemias/prevenção & controle , Máquina de Vetores de Suporte
3.
Eur Phys J Plus ; 137(1): 144, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35079560

RESUMO

The presented study deals with the exploitation of the artificial intelligence knacks-based stochastic paradigm for the numerical treatment of the nonlinear delay differential system for dynamics of plant virus propagation with the impact of seasonality and delays (PVP-SD) model by implementing neural networks backpropagation with Bayesian regularization scheme (NNs-BBRS). The PVP-SD model is represented with five classes-based ODEs systems for the interaction between insects and plants. The nonlinear PVP-SD model governs with five populations: S(t) susceptible plants, I(t) infected plants, X(t) susceptible insect vectors, Y(t) infected insect vectors and P(t) predators. Adams numerical procedure is adopted to generate the reference solutions of the nonlinear PVP-SD model based on the variety of cases by varying the plants bite rate due to vectors, vector bite rate due to plants, plant's recovery rate, predator contact rate with healthy insects, predator contact rate with infected insects and death rate caused by insecticides. The approximate solutions of the nonlinear PVP-SD model are determined by executing the designed NNs-BBRS through different target and inputs arbitrary selected samples for the training and testing data. Validation of the consistent precision and convergence of the designed NNs-BBRS is efficaciously substantiated through exhaustive simulations and analyses on mean square error-based merit function, index of regression and error histogram illustrations.

4.
Springerplus ; 5(1): 2063, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27995040

RESUMO

BACKGROUND: In this study, bio-inspired computing is exploited for solving system of nonlinear equations using variants of genetic algorithms (GAs) as a tool for global search method hybrid with sequential quadratic programming (SQP) for efficient local search. The fitness function is constructed by defining the error function for systems of nonlinear equations in mean square sense. The design parameters of mathematical models are trained by exploiting the competency of GAs and refinement are carried out by viable SQP algorithm. RESULTS: Twelve versions of the memetic approach GA-SQP are designed by taking a different set of reproduction routines in the optimization process. Performance of proposed variants is evaluated on six numerical problems comprising of system of nonlinear equations arising in the interval arithmetic benchmark model, kinematics, neurophysiology, combustion and chemical equilibrium. Comparative studies of the proposed results in terms of accuracy, convergence and complexity are performed with the help of statistical performance indices to establish the worth of the schemes. CONCLUSIONS: Accuracy and convergence of the memetic computing GA-SQP is found better in each case of the simulation study and effectiveness of the scheme is further established through results of statistics based on different performance indices for accuracy and complexity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...