Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Invest Ophthalmol Vis Sci ; 52(8): 5995-6003, 2011 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-21693599

RESUMO

PURPOSE: The perception of 11 persons blinded by hereditary retinal degeneration elicited by a subretinally implanted 16-electrode array used for light-independent direct stimulation of the retina is described. This device is part of the Tübingen retina implant, which also employs a light-sensitive, multiphotodiode array (MPDA). The ability to reliably recognize complex spatial percepts was investigated. METHODS: Eleven blind volunteers received implants and participated in standardized psychophysical tests investigating the size and shape of perceptions elicited by single-electrode activation, multiple-electrode activation, and activation of compound patterns such as simplified letters. RESULTS: Visual percepts were elicited reliably in 8 of 11 patients. On single-electrode activation, percepts were generally described as round spots of light of distinguishable localization in the visual field. On activation of a pattern of electrodes, percepts matched that pattern when electrodes were activated sequentially. Patterns such as horizontal or vertical bars were identified reliably; the most recent participant was able to recognize simplified letters presented on the 16-electrode array. The smallest distance between sites of concurrent retinal stimulation still yielding discernible spots of light was assessed to be 280 µm, corresponding to a logMAR of 1.78. CONCLUSIONS: Subretinal electric stimulation can yield reliable, predictable percepts. Patterned perception is feasible, enabling blind persons to recognize shapes and discriminate different letters. Stimulation paradigms must be optimized, to further increase spatial resolution, demanding a better understanding of physical and biological effects of single versus repetitive stimulation (ClinicalTrials.gov number, NCT00515814).


Assuntos
Cegueira/cirurgia , Reconhecimento Visual de Modelos , Distrofias Retinianas/cirurgia , Percepção Espacial , Próteses Visuais , Adulto , Cegueira/reabilitação , Eletrodos Implantados , Humanos , Masculino , Pessoa de Meia-Idade , Percepção de Movimento , Orientação , Desenho de Prótese , Implantação de Prótese/métodos , Psicofísica , Distrofias Retinianas/reabilitação
2.
Proc Biol Sci ; 278(1711): 1489-97, 2011 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-21047851

RESUMO

A light-sensitive, externally powered microchip was surgically implanted subretinally near the macular region of volunteers blind from hereditary retinal dystrophy. The implant contains an array of 1500 active microphotodiodes ('chip'), each with its own amplifier and local stimulation electrode. At the implant's tip, another array of 16 wire-connected electrodes allows light-independent direct stimulation and testing of the neuron-electrode interface. Visual scenes are projected naturally through the eye's lens onto the chip under the transparent retina. The chip generates a corresponding pattern of 38 × 40 pixels, each releasing light-intensity-dependent electric stimulation pulses. Subsequently, three previously blind persons could locate bright objects on a dark table, two of whom could discern grating patterns. One of these patients was able to correctly describe and name objects like a fork or knife on a table, geometric patterns, different kinds of fruit and discern shades of grey with only 15 per cent contrast. Without a training period, the regained visual functions enabled him to localize and approach persons in a room freely and to read large letters as complete words after several years of blindness. These results demonstrate for the first time that subretinal micro-electrode arrays with 1500 photodiodes can create detailed meaningful visual perception in previously blind individuals.


Assuntos
Eletrodos Implantados , Implantes Experimentais , Leitura , Retina/cirurgia , Distrofias Retinianas/cirurgia , Auxiliares Sensoriais , Percepção Visual/fisiologia , Adulto , Feminino , Humanos , Luz , Masculino
3.
Artigo em Inglês | MEDLINE | ID: mdl-22254939

RESUMO

For neural stimulation, reliable high density charge transfer into tissue is required. One electrode material for these applications is titanium nitride (TiN). In this paper, a method for lifetime analysis of TiN electrodes is discussed. Our method significantly differs from open literature. The tests were run for much longer durations. Special attention was paid to the optical appearance and electrode voltage response to different input current pulses. According to our investigations, TiN electrodes are able to deliver at most 0.2 mC/cm(2) charge density for square shaped electrodes with 50 µm × 50 µm dimensions in safe operation, which is less compared to previous reports. The safe operation window for TiN was confirmed to be ± 1 V in terms of electrode potential with the counter electrode considered as reference. We found that the shape of the waveform does not affect electrode lifetime. Our measurements show that rectangular voltage waveforms inject the most amount of charge into the electrodes compared to other shapes. This makes rectangular electrode voltage signals optimal for highest charge injection at a given lifetime. In our case with square electrodes, the absolute electrode potential is found to be the more important parameter in electrode lifetime, compared to Helmholtz capacitor voltage drop.


Assuntos
Eletrodos , Neurônios/fisiologia , Titânio/química , Materiais Biocompatíveis , Técnicas In Vitro
4.
Artigo em Inglês | MEDLINE | ID: mdl-21096939

RESUMO

Our group has developed a subretinal microphotodiode array for restoration of vision. In a clinical pilot study the array has been implanted in 11 patients suffering from photoreceptor degenerations. Here we present promising results from some of those patients where the retinal tissue above the chip was functional and the implant fulfilled its expected function. A spatial resolution of approximately 0.3 cycles/degree could be achieved with fine stripe patterns. In one subject where the implant had been placed directly under the macular region of the retina a visual acuity of 20/1000 could be measured. Artificially restored visual acuity of this quality has not been reported previously. Finally, we present images illustrating an approximation of how the visual perceptions might have appeared to the subjects, based on a mathematical model and patient reports.


Assuntos
Eletrodos Implantados , Reconhecimento Visual de Modelos/fisiologia , Recuperação de Função Fisiológica/fisiologia , Retina/fisiopatologia , Visão Ocular/fisiologia , Humanos , Microeletrodos , Oftalmoscópios , Estimulação Luminosa , Implantação de Prótese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...