Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Hum Genet ; 106(6): 885-892, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32413284

RESUMO

Leveraging high-dimensional molecular datasets can help us develop mechanistic insight into associations between genetic variants and complex traits. In this study, we integrated human proteome data derived from brain tissue to evaluate whether targeted proteins putatively mediate the effects of genetic variants on seven neurological phenotypes (Alzheimer disease, amyotrophic lateral sclerosis, depression, insomnia, intelligence, neuroticism, and schizophrenia). Applying the principles of Mendelian randomization (MR) systematically across the genome highlighted 43 effects between genetically predicted proteins derived from the dorsolateral prefrontal cortex and these outcomes. Furthermore, genetic colocalization provided evidence that the same causal variant at 12 of these loci was responsible for variation in both protein and neurological phenotype. This included genes such as DCC, which encodes the netrin-1 receptor and has an important role in the development of the nervous system (p = 4.29 × 10-11 with neuroticism), as well as SARM1, which has been previously implicated in axonal degeneration (p = 1.76 × 10-08 with amyotrophic lateral sclerosis). We additionally conducted a phenome-wide MR study for each of these 12 genes to assess potential pleiotropic effects on 700 complex traits and diseases. Our findings suggest that genes such as SNX32, which was initially associated with increased risk of Alzheimer disease, may potentially influence other complex traits in the opposite direction. In contrast, genes such as CTSH (which was also associated with Alzheimer disease) and SARM1 may make worthwhile therapeutic targets because they did not have genetically predicted effects on any of the other phenotypes after correcting for multiple testing.


Assuntos
Encéfalo/metabolismo , Variação Genética/genética , Doenças do Sistema Nervoso/genética , Fenômica , Proteoma/genética , Proteômica , Doença de Alzheimer/genética , Esclerose Lateral Amiotrófica/genética , Proteínas do Domínio Armadillo/genética , Proteínas de Transporte/genética , Catepsina H/genética , Proteínas do Citoesqueleto/genética , Depressão/genética , Estudo de Associação Genômica Ampla , Humanos , Inteligência/genética , Doenças do Sistema Nervoso/metabolismo , Neuroticismo , Proteínas Nucleares/genética , Fenótipo , Proteoma/metabolismo , Esquizofrenia/genética , Distúrbios do Início e da Manutenção do Sono/genética , Nexinas de Classificação/genética
2.
Sci Rep ; 9(1): 5981, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30979939

RESUMO

High mortality after discharge from hospital following acute illness has been observed among children with Severe Acute Malnutrition (SAM). However, mechanisms that may be amenable to intervention to reduce risk are unknown. We performed a nested case-control study among HIV-uninfected children aged 2-59 months treated for complicated SAM according to WHO recommendations at four Kenyan hospitals. Blood was drawn from 1778 children when clinically judged stable before discharge from hospital. Cases were children who died within 60 days. Controls were randomly selected children who survived for one year without readmission to hospital. Untargeted proteomics, total protein, cytokines and chemokines, and leptin were assayed in plasma and corresponding biological processes determined. Among 121 cases and 120 controls, increased levels of calprotectin, von Willebrand factor, angiotensinogen, IL8, IL15, IP10, TNFα, and decreased levels of leptin, heparin cofactor 2, and serum paraoxonase were associated with mortality after adjusting for possible confounders. Acute phase responses, cellular responses to lipopolysaccharide, neutrophil responses to bacteria, and endothelial responses were enriched among cases. Among apparently clinically stable children with SAM, a sepsis-like profile is associated with subsequent death. This may be due to ongoing bacterial infection, translocated bacterial products or deranged immune response during nutritional recovery.


Assuntos
Desnutrição Aguda Grave/sangue , Desnutrição Aguda Grave/mortalidade , Biomarcadores/sangue , Estudos de Casos e Controles , Feminino , Humanos , Lactente , Masculino , Alta do Paciente , Fatores de Tempo
3.
Wellcome Open Res ; 2: 47, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29181450

RESUMO

Background. Few hospitals in high malaria endemic countries in Africa have the diagnostic capacity for clinically distinguishing acute bacterial meningitis (ABM) from cerebral malaria (CM). As a result, empirical use of antibiotics is necessary. A biochemical marker of ABM would facilitate precise clinical diagnosis and management of these infections and enable rational use of antibiotics. Methods. We used label-free protein quantification by mass spectrometry to identify cerebrospinal fluid (CSF) markers that distinguish ABM (n=37) from CM (n=22) in Kenyan children. Fold change (FC) and false discovery rates (FDR) were used to identify differentially expressed proteins. Subsequently, potential biomarkers were assessed for their ability to discriminate between ABM and CM using receiver operating characteristic (ROC) curves. Results. The host CSF proteome response to ABM ( Haemophilusinfluenza and Streptococcuspneumoniae) is significantly different to CM. Fifty two proteins were differentially expressed (FDR<0.01, Log FC≥2), of which 83% (43/52) were upregulated in ABM compared to CM. Myeloperoxidase and lactotransferrin were present in 37 (100%) and 36 (97%) of ABM cases, respectively, but absent in CM (n=22). Area under the ROC curve (AUC), sensitivity, and specificity were assessed for myeloperoxidase (1, 1, and 1; 95% CI, 1-1) and lactotransferrin (0.98, 0.97, and 1; 95% CI, 0.96-1). Conclusion. Myeloperoxidase and lactotransferrin have a high potential to distinguish ABM from CM and thereby improve clinical management. Their validation requires a larger cohort of samples that includes other bacterial aetiologies of ABM.

4.
Mol Inform ; 33(11-12): 790-801, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27485425

RESUMO

Developing database systems connecting diverse species based on omics is the most important theme in big data biology. To attain this purpose, we have developed KNApSAcK Family Databases, which are utilized in a number of researches in metabolomics. In the present study, we have developed a network-based approach to analyze relationships between 3D structure and biological activity of metabolites consisting of four steps as follows: construction of a network of metabolites based on structural similarity (Step 1), classification of metabolites into structure groups (Step 2), assessment of statistically significant relations between structure groups and biological activities (Step 3), and 2-dimensional clustering of the constructed data matrix based on statistically significant relations between structure groups and biological activities (Step 4). Applying this method to a data set consisting of 2072 secondary metabolites and 140 biological activities reported in KNApSAcK Metabolite Activity DB, we obtained 983 statistically significant structure group-biological activity pairs. As a whole, we systematically analyzed the relationship between 3D-chemical structures of metabolites and biological activities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...