Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 831: 154879, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35358524

RESUMO

Oyster reef restoration is increasingly used as a tool for restoring lost ecosystem services in degraded aquatic systems, but questions remain about the efficacy of the practice and when/if restored reefs may behave similarly to intact natural reefs. In this case study, field observations highlighted short- (<1 month post-restoration) and longer-term (30 months; 3 recruitment cycles) transformations in canopy, hydrodynamic, and biogeochemical characteristics of a restored intertidal oyster reef relative to nearby intact and degraded reefs. Within 12 months of restoration, live oyster density (326 oysters/m2), mean shell length (47 mm), and mean canopy height (76 mm) did not differ significantly from those observed on a reference reef. Lowering of the reef crest during restoration reestablished over-reef flow and periodic tidal inundation, improving hydraulic connectivity between the channel and the reef surface. This immediately restored much of the reef's hydrodynamic function and eliminated the irregular flow patterns observed on the previously degraded reef. Results showed that mean flow (channel-to-reef flow attenuation: 98% / 62%; within/above canopy) and velocity normalized turbulence (w'2¯/U2: 10-1/10-2; ϵ/U3: 100/10-2 m-1) characteristics were similar across the restored and reference reefs within 1 year of restoration, with temporal changes in mixing within the canopy attributed to increases in live oyster density. Nutrient pools (mean total carbon, total nitrogen) on reference and restored reefs had similar magnitudes within 1 year (C: 39 & 33 g/kg, N: 1.5 & 1.8 g/kg), while increases in DOC and NH4+ were correlated with the presence of live oysters. Most changes that occurred on the restored reef were linked to oyster recruitment and canopy growth, which modulated hydrodynamics through direct flow interactions and controlled sediment nutrient and organic matter content through waste deposition and burial.


Assuntos
Crassostrea , Animais , Carbono , Ecossistema , Hidrodinâmica , Nitrogênio
2.
J Environ Manage ; 300: 113747, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34649328

RESUMO

As a new strategy for treating excess nutrients in roadway runoff, a self-filtering roadway could be accomplished by including engineered infiltration media within a vegetated filter strip (VFS) located in the roadway shoulder. However, nutrient removal performance will depend on the design to effectively infiltrate roadway runoff and the capacity of subsurface media to sequester or remove nutrients from infiltrated runoff. The objective of this study is to test hydraulic and nutrient removal performance of a roadside VFS over varied rainfall-runoff event sizes and filter widths. Two identical 1:1 scale physical models of roadway shoulders and embankments, one containing engineered media (Treatment model) and the other without (Control model), were tested with simulated rainfall and runoff from 1- and 2-lane roadways. Overall, 32 paired hydraulic experiments and 28 paired nutrient removal experiments were completed to assess performance across frequent and extreme rainfall-runoff events. The results indicate that scalability of performance with filter width varied by parameter. Runoff generation scaled predictably with filter width, as runoff generated close to the pavement and total infiltration increased with filter length. A 6 m-wide VFS containing the engineered media infiltrated all rainfall-runoff except during the most extreme storm events (1-h storms of 76.2 mm and 50.8 mm), where respectively 35% and 22% of rainfall-runoff did not infiltrate and left the system as surface runoff. A majority of phosphorus was retained within a 1.5 m filter while nitrate removal was not observed until 6 m. The Treatment model strongly outperformed the Control model with respect to nitrate (arithmetic mean ± standard deviation of 94 ± 6% reduction vs. 23 ± 64% increase, p < .001) and total nitrogen removal (80 ± 5% vs. 38 ± 23% reduction, p < .001) due to higher rates of microbially-mediated denitrification in the Treatment model. The two models performed comparably with regard to phosphorus reduction (84 ± 9% vs. 82 ± 12% reduction). A minimum 6 m filter width is recommended to ensure sufficient infiltration of runoff and nitrogen removal. Results of this study address uncertainty regarding nutrient removal performance of VFS in urban runoff applications and highlight a potential strategy for standardizing VFS performance across varied soil properties by including engineered media within the filter.


Assuntos
Fósforo , Solo , Nitratos , Nitrogênio , Nutrientes , Chuva , Movimentos da Água
3.
Ecol Appl ; 31(6): e02382, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34042243

RESUMO

One of the paramount goals of oyster reef living shorelines is to achieve sustained and adaptive coastal protection, which requires meeting ecological (i.e., develop a self-sustaining oyster population) and engineering (i.e., provide coastal defense) targets. In a large-scale comparison along the Atlantic and Gulf coasts of the United States, the efficacy of various designs of oyster reef living shorelines at providing wave attenuation was evaluated accounting for the ecological limitations of oysters with regard to inundation duration. A critical threshold for intertidal oyster reef establishment is 50% inundation duration. Living shorelines that spent less than one-half of the time (<50%) inundated were not considered suitable habitat for oysters, however, were effective at wave attenuation (68% reduction in wave height). Reefs that experienced >50% inundation were considered suitable habitat for oysters, but wave attenuation was similar to controls (no reef; ~5% reduction in wave height). Many of the oyster reef living shoreline approaches therefore failed to optimize the ecological and engineering goals. In both inundation regimes, wave transmission decreased with an increasing freeboard (difference between reef crest elevation and water level), supporting its importance in the wave attenuation capacity of oyster reef living shorelines. However, given that the reef crest elevation (and thus freeboard) should be determined by the inundation duration requirements of oysters, research needs to be refocused on understanding the implications of other reef parameters (e.g., width) for optimizing wave attenuation. A broader understanding of the reef characteristics and seascape contexts that result in effective coastal defense by oyster reefs is needed to inform appropriate design and implementation of oyster-based living shorelines globally.


Assuntos
Ecossistema , Ostreidae , Movimentos da Água , Animais
4.
Sci Total Environ ; 719: 134826, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31879034

RESUMO

Removing excess nutrient from stormwater runoffs is necessary to protect the water quality of receiving water bodies such as rivers, lakes, springs, and groundwater aquifers. Silver Springs Springshed, located in the vicinity of Ocala, Florida, has received widespread attention from the local government and residents due to its long-term nutrient impact, which has resulted in eutrophication. Blanket filters containing Bio-sorption Activated Media (BAM) were implemented with different depths of the vadose zone in a stormwater retention basin. The design combined the interaction with groundwater as an innovative Best Management Practice can potentially boost the performance of nutrient removal. Selected storm runoffs were collected at multiple points that cover the runoff timeframe to determine the pollutant load. Infiltrating water samples were collected at various depths within BAM using lysimeters to validate the treatment effectiveness. Significant pollutant load reduction of nutrients was confirmed with highest 99% and 91% removal of nitrate and nitrite (NOx) and total nitrogen (TN) at the deep blanket filter (with more groundwater intrusion impacts) due to more effective denitrification and longer contact time. Yet the highest pollutant load reduction of 93% and 84% removal of NOx and TN was also observed at the shallow blanket filter (with less groundwater intrusion impacts). On the other hand, better pollutant load reduction of ammonia in the BAM layer was found at the shallow blanket filter presumably due to more available oxygen for nitrification.

5.
Waste Manag ; 74: 52-62, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29366796

RESUMO

Throughout the world, much food produced is wasted. The resource impact of producing wasted food is substantial; however, little is known about the energy and water consumed in managing food waste after it has been disposed. Herein, we characterize food waste within the Food-Energy-Water (FEW) nexus and parse the differential FEW effects of producing uneaten food and managing food loss and waste. We find that various food waste management options, such as waste prevention, landfilling, composting, anaerobic digestion, and incineration, present variable pathways for FEW impacts and opportunities. Furthermore, comprehensive sustainable management of food waste will involve varied mechanisms and actors at multiple levels of governance and at the level of individual consumers. To address the complex food waste problem, we therefore propose a "food-waste-systems" approach to optimize resources within the FEW nexus. Such a framework may be applied to devise strategies that, for instance, minimize the amount of edible food that is wasted, foster efficient use of energy and water in the food production process, and simultaneously reduce pollution externalities and create opportunities from recycled energy and nutrients. Characterization of FEW nexus impacts of wasted food, including descriptions of dynamic feedback behaviors, presents a significant research gap and a priority for future work. Large-scale decision making requires more complete understanding of food waste and its management within the FEW nexus, particularly regarding post-disposal impacts related to water.


Assuntos
Alimentos , Gerenciamento de Resíduos , Incineração , Reciclagem , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...