Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5467, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937463

RESUMO

The genome of Mycobacterium tuberculosis encodes for a large repertoire of toxin-antitoxin systems. In the present study, MenT3 and MenT4 toxins belonging to MenAT subfamily of TA systems have been functionally characterized. We demonstrate that ectopic expression of these toxins inhibits bacterial growth and this is rescued upon co-expression of their cognate antitoxins. Here, we show that simultaneous deletion of menT3 and menT4 results in enhanced susceptibility of M. tuberculosis upon exposure to oxidative stress and attenuated growth in guinea pigs and mice. We observed reduced expression of transcripts encoding for proteins that are essential or required for intracellular growth in mid-log phase cultures of ΔmenT4ΔT3 compared to parental strain. Further, the transcript levels of proteins involved in efficient bacterial clearance were increased in lung tissues of ΔmenT4ΔT3 infected mice relative to parental strain infected mice. We show that immunization of mice and guinea pigs with ΔmenT4ΔT3 confers significant protection against M. tuberculosis infection. Remarkably, immunization of mice with ΔmenT4ΔT3 results in increased antigen-specific TH1 bias and activated memory T cell response. We conclude that MenT3 and MenT4 are important for M. tuberculosis pathogenicity and strains lacking menT3 and menT4 have the potential to be explored further as vaccine candidates.


Assuntos
Proteínas de Bactérias , Mycobacterium tuberculosis , Tuberculose , Animais , Cobaias , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/imunologia , Camundongos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/imunologia , Tuberculose/prevenção & controle , Tuberculose/imunologia , Tuberculose/microbiologia , Feminino , Pulmão/microbiologia , Pulmão/patologia , Pulmão/imunologia , Deleção de Genes , Toxinas Bacterianas/genética , Toxinas Bacterianas/imunologia , Toxinas Bacterianas/metabolismo , Camundongos Endogâmicos C57BL , Vacinas contra a Tuberculose/imunologia , Estresse Oxidativo , Virulência/genética
2.
Chem Biol Drug Des ; 103(4): e14512, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570316

RESUMO

A thorough search for the development of innovative drugs to treat tuberculosis, especially considering the urgent need to address developing drug resistance, we report here a synthetic series of ethyl 3-benzoyl-7-morpholinoindolizine-1-carboxylate analogues (5a-o) as potent anti-tubercular agents. These morpholino-indolizines were synthesized by reacting 4-morpholino pyridinium salts, with various electron-deficient acetylenes to afford the ethyl 3-benzoyl-7-morpholinoindolizine-1-carboxylate analogues (5a-o). All synthesized intermediate and final compounds are characterized by spectroscopic methods such as 1H NMR, 13C NMR and HRMS and further examined for their anti-tubercular activity against the M. tuberculosis H37Rv strain (ATCC 27294-American type cell culture). All the compounds screened for anti-tubercular activity in the range of 6.25-50 µM against the H37Rv strain of Mycobacterium tuberculosis. Compound 5g showed prominent activity with MIC99 2.55 µg/mL whereas compounds 5d and 5j showed activity with MIC99 18.91 µg/mL and 25.07 µg/mL, respectively. In silico analysis of these compounds revealed drug-likeness. Additionally, the molecular target identification for Malate synthase (PDB 5CBB) is attained by computational approach. The compound 5g with a MIC99 value of 2.55 µg/mL against M. tuberculosis H37Rv emerged as the most promising anti-TB drug and in silico investigations suggest Malate synthase (5CBB) might be the compound's possible target.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Antituberculosos , Relação Estrutura-Atividade , Malato Sintase , Morfolinos , Simulação de Acoplamento Molecular , Testes de Sensibilidade Microbiana
3.
Proc Natl Acad Sci U S A ; 121(2): e2309664121, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38170746

RESUMO

Inorganic polyphosphate (polyP) is primarily synthesized by Polyphosphate Kinase-1 (PPK-1) and regulates numerous cellular processes, including energy metabolism, stress adaptation, drug tolerance, and microbial pathogenesis. Here, we report that polyP interacts with acyl CoA carboxylases, enzymes involved in lipid biosynthesis in Mycobacterium tuberculosis. We show that deletion of ppk-1 in M. tuberculosis results in transcriptional and metabolic reprogramming. In comparison to the parental strain, the Δppk-1 mutant strain had reduced levels of virulence-associated lipids such as PDIMs and TDM. We also observed that polyP deficiency in M. tuberculosis is associated with enhanced phagosome-lysosome fusion in infected macrophages and attenuated growth in mice. Host RNA-seq analysis revealed decreased levels of transcripts encoding for proteins involved in either type I interferon signaling or formation of foamy macrophages in the lungs of Δppk-1 mutant-infected mice relative to parental strain-infected animals. Using target-based screening and molecular docking, we have identified raloxifene hydrochloride as a broad-spectrum PPK-1 inhibitor. We show that raloxifene hydrochloride significantly enhanced the activity of isoniazid, bedaquiline, and pretomanid against M. tuberculosis in macrophages. Additionally, raloxifene inhibited the growth of M. tuberculosis in mice. This is an in-depth study that provides mechanistic insights into the regulation of mycobacterial pathogenesis by polyP deficiency.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Camundongos , Simulação de Acoplamento Molecular , Cloridrato de Raloxifeno/metabolismo , Polifosfatos/metabolismo , Tuberculose/microbiologia , Redes e Vias Metabólicas , Proteínas de Bactérias/metabolismo
4.
Antimicrob Agents Chemother ; 68(2): e0076623, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38193667

RESUMO

New drugs with novel mechanisms of action are urgently needed to tackle the issue of drug-resistant tuberculosis. Here, we have performed phenotypic screening using the Pathogen Box library obtained from the Medicines for Malaria Venture against Mycobacterium tuberculosis in vitro. We have identified a pyridine carboxamide derivative, MMV687254, as a promising hit. This molecule is specifically active against M. tuberculosis and Mycobacterium bovis Bacillus Calmette-Guérin (M. bovis BCG) but inactive against Enterococcus faecalis, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and Escherichia coli pathogens. We demonstrate that MMV687254 inhibits M. tuberculosis growth in liquid cultures in a bacteriostatic manner. Surprisingly, MMV687254 was as active as isoniazid in macrophages and inhibited M. tuberculosis growth in a bactericidal manner. Mechanistic studies revealed that MMV687254 is a prodrug and that its anti-mycobacterial activity requires AmiC-dependent hydrolysis. We further demonstrate that MMV687254 inhibits M. tuberculosis growth in macrophages by inducing autophagy. In the present study, we have also carried out a detailed structure-activity relationship study and identified a promising novel lead candidate. The identified novel series of compounds also showed activity against drug-resistant M. bovis BCG and M. tuberculosis clinical strains. Finally, we demonstrate that in contrast to MMV687254, the lead molecule was able to inhibit M. tuberculosis growth in a chronic mouse model of infection. Taken together, we have identified a novel lead molecule with a dual mechanism of action that can be further optimized to design more potent anti-tubercular agents.


Assuntos
Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculose , Camundongos , Animais , Antituberculosos/farmacologia , Isoniazida , Tuberculose/prevenção & controle
6.
Microb Pathog ; 173(Pt B): 105885, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36403711

RESUMO

Stress adaptation and virulence of various bacterial pathogens require stringent response pathways involving guanosine pentaphosphate and inorganic polyphosphate (PolyP). In M. tuberculosis, intracellular PolyP levels are maintained by the activities of polyphosphate kinase (PPK-1, PPK-2) and exopolyphosphatases (PPX-1, PPX-2). We demonstrate that these exopolyphosphatases cumulatively contribute to biofilm formation and survival of M. tuberculosis in nutrient limiting, low oxygen growth conditions and in macrophages. Characterization of single (Δppx2) and double knock out strain (dkppx) of M. tuberculosis demonstrated that these exopolyphosphatases are essential for establishing infection in guinea pigs and mice. Transcriptional profiling revealed that relative to the parental strain the expression of genes belonging to DosR regulon were significantly reduced in mid-log phase cultures of dkppx strain. We also show that PolyP inhibited the autophosphorylation activities associated with DosT and DosS sensor kinases. Host RNA-seq analysis revealed that transcripts involved in various antimicrobial pathways such as apoptosis, autophagy, macrophage activation, calcium signalling, innate and T-cell response were differentially expressed in lung tissues of dkppx strain infected mice. Taken together, we demonstrate that enzymes involved in PolyP homeostasis play a critical role in physiology and virulence of M. tuberculosis. These enzymes are attractive targets for developing novel interventions that might be active against drug-sensitive and drug-resistant M. tuberculosis.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Animais , Cobaias , Camundongos , Mycobacterium tuberculosis/genética , Virulência , Macrófagos
7.
Sci Rep ; 12(1): 13801, 2022 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-35963878

RESUMO

There is an urgent need to validate new drug targets and identify small molecules that possess activity against both drug-resistant and drug-sensitive bacteria. The enzymes belonging to amino acid biosynthesis have been shown to be essential for growth in vitro, in vivo and have not been exploited much for the development of anti-tubercular agents. Here, we have identified small molecule inhibitors targeting homoserine acetyl transferase (HSAT, MetX, Rv3341) from M. tuberculosis. MetX catalyses the first committed step in L-methionine and S-adenosyl methionine biosynthesis resulting in the formation of O-acetyl-homoserine. Using CRISPRi approach, we demonstrate that conditional repression of metX resulted in inhibition of M. tuberculosis growth in vitro. We have determined steady state kinetic parameters for the acetylation of L-homoserine by Rv3341. We show that the recombinant enzyme followed Michaelis-Menten kinetics and utilizes both acetyl-CoA and propionyl-CoA as acyl-donors. High-throughput screening of a 2443 compound library resulted in identification of small molecule inhibitors against MetX enzyme from M. tuberculosis. The identified lead compounds inhibited Rv3341 enzymatic activity in a dose dependent manner and were also active against HSAT homolog from S. aureus. Molecular docking of the identified primary hits predicted residues that are essential for their binding in HSAT homologs from M. tuberculosis and S. aureus. ThermoFluor assay demonstrated direct binding of the identified primary hits with HSAT proteins. Few of the identified small molecules were able to inhibit growth of M. tuberculosis and S. aureus in liquid cultures. Taken together, our findings validated HSAT as an attractive target for development of new broad-spectrum anti-bacterial agents that should be effective against drug-resistant bacteria.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Homosserina/farmacologia , Humanos , Simulação de Acoplamento Molecular , Staphylococcus aureus
8.
J Biochem Mol Toxicol ; 36(9): e23123, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35686933

RESUMO

A series of 2,5-disubstituted benzimidazole derivatives was synthesized with the aim to identify compounds with potent anti-TB activity. All the compounds were screened in vitro against cultured Mycobacterium tuberculosis H37 Rv strain and found to be exhibiting MIC99 values in the range of 0.195-100 µM. Out of 43 synthesized compounds, two compounds 11h and 13e showed better anti-TB activity than the reference drug isoniazid.


Assuntos
Isoniazida , Mycobacterium tuberculosis , Antituberculosos/farmacologia , Benzimidazóis/farmacologia , Isoniazida/farmacologia , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade
10.
Bioorg Med Chem Lett ; 48: 128236, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34242760

RESUMO

The riboflavin biosynthetic pathway is a promising target for the development of novel antimycobacterial drugs given the lack of riboflavin transporter in M. tuberculosis. Herein, a series of riboflavin derivatives was designed, synthesized and screened for their antimycobacterial and antibacterial activity. The compounds 1a, 1b, 2a, 3a and 5a displayed noticeable antitubercular activity against M. tuberculosis with minimum inhibitory concentration (MIC99) in the range of 6.25 to 25 µM. The lead compound 5a had a selectivity index of 10.7 in the present study. The compounds 2a, 2b, 2c, 4c and 4d showed relatively low to moderate antibacterial activity (MIC = 100-200 µM) against gram-positive strains. Notably, the compounds do not show any inhibition against gram-negative strains even at 200 µM concentration. Further, molecular docking and binding experiments with representative flavin mononucleotide (FMN) riboswitch suggested that the riboflavin analogs exhibited antimycobacterial activity plausibly through FMN riboswitch-mediated repression of riboflavin biosynthesis. In addition to FMN riboswitch, flavoproteins involved in the flavin biosynthesis could also be target of riboflavin derivatives. In conclusion, the potency and low toxicity of riboflavin analogs particularly 5a (MIC99 = 6.25) make it a lead compound for the synthesis of new analogs for antimycobacterial therapy.


Assuntos
Antituberculosos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Riboflavina/farmacologia , Antituberculosos/síntese química , Antituberculosos/química , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Estrutura Molecular , Riboflavina/síntese química , Riboflavina/química , Relação Estrutura-Atividade
14.
Sci Rep ; 10(1): 15610, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32958827

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

15.
Sci Adv ; 6(23): eaba6944, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32537511

RESUMO

Virulence-associated protein B and C toxin-antitoxin (TA) systems are widespread in prokaryotes, but their precise role in physiology is poorly understood. We have functionally characterized the VapBC22 TA system from Mycobacterium tuberculosis. Transcriptome analysis revealed that overexpression of VapC22 toxin in M. tuberculosis results in reduced levels of metabolic enzymes and increased levels of ribosomal proteins. Proteomics studies showed reduced expression of virulence-associated proteins and increased levels of cognate antitoxin, VapB22 in the ΔvapC22 mutant strain. Furthermore, both the ΔvapC22 mutant and VapB22 overexpression strains of M. tuberculosis were susceptible to killing upon exposure to oxidative stress and showed attenuated growth in guinea pigs and mice. Host transcriptome analysis suggests upregulation of the transcripts involved in innate immune responses and tissue remodeling in mice infected with the ΔvapC22 mutant strain. Together, we demonstrate that the VapBC22 TA system belongs to a key regulatory network and is essential for M. tuberculosis pathogenesis.

16.
Medchemcomm ; 10(5): 817-827, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31293724

RESUMO

Tuberculosis (TB) is one of the world's deadliest infectious diseases, caused by Mycobacterium tuberculosis (Mtb). In the present study, a 3D QSAR study was performed for the design of novel substituted benzimidazole derivatives as anti-mycobacterial agents. The anti-tubercular activity of the designed compounds was predicted using the generated 3D QSAR models. The designed compounds which showed better activity were synthesized as 1,2-disubstituted benzimidazole-5-carboxylic acid derivatives (series 1) and 3-substituted-5H-benzimidazo[1,2-d][1,4]benzodiazepin-6(7H)-one derivatives (series 2) using the liquid phase combinatorial approach using a soluble polymer assisted support (PEG5000). The compounds were characterized by 1H-NMR, 13C-NMR, FTIR and mass spectrometry. HPLC analysis was carried out to evaluate the purity of the compounds. We observed that the synthesised compounds inhibited the growth of intracellular M. tuberculosis H37Rv in a bactericidal manner. The most active compound 16 displayed an MIC value of 0.0975 µM against the Mtb H37Rv strain in liquid cultures. The lead compound was also able to inhibit the growth of intracellular mycobacteria in THP-1 macrophages.

17.
Artigo em Inglês | MEDLINE | ID: mdl-31285226

RESUMO

Tuberculosis (TB) is a global health concern, and this situation has further worsened due to the emergence of drug-resistant strains and the failure of BCG vaccine to impart protection. There is an imperative need to develop highly sensitive, specific diagnostic tools, novel therapeutics, and vaccines for the eradication of TB. In the present study, a chemical screen of a pharmacologically active compound library was performed to identify antimycobacterial compounds. The phenotypic screen identified a few novel small-molecule inhibitors, including NU-6027, a known CDK-2 inhibitor. We demonstrate that NU-6027 inhibits Mycobacterium bovis BCG growth in vitro and also displayed cross-reactivity with Mycobacterium tuberculosis protein kinase D (PknD) and protein kinase G (PknG). Comparative structural and sequence analysis along with docking simulation suggest that the unique binding site stereochemistry of PknG and PknD accommodates NU-6027 more favorably than other M. tuberculosis Ser/Thr protein kinases. Further, we also show that NU-6027 treatment induces the expression of proapoptotic genes in macrophages. Finally, we demonstrate that NU-6027 inhibits M. tuberculosis growth in both macrophage and mouse tissues. Taken together, these results indicate that NU-6027 can be optimized further for the development of antimycobacterial agents.


Assuntos
Antituberculosos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Mycobacterium bovis/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Compostos Nitrosos/farmacologia , Proteína Quinase C/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Pirimidinas/farmacologia , Antituberculosos/química , Proteínas Reguladoras de Apoptose/agonistas , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Regulação da Expressão Gênica , Ensaios de Triagem em Larga Escala , Interações Hospedeiro-Patógeno , Macrófagos/metabolismo , Macrófagos/microbiologia , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Mycobacterium bovis/enzimologia , Mycobacterium bovis/genética , Mycobacterium bovis/crescimento & desenvolvimento , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crescimento & desenvolvimento , Compostos Nitrosos/química , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteína Quinase C/química , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Secundária de Proteína , Pirimidinas/química , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
18.
J Biol Chem ; 294(28): 10819-10832, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31113860

RESUMO

Stringent response pathways involving inorganic polyphosphate (PolyP) play an essential role in bacterial stress adaptation and virulence. The intracellular levels of PolyP are modulated by the activities of polyphosphate kinase-1 (PPK1), polyphosphate kinase-2 (PPK2), and exopolyphosphatases (PPXs). The genome of Mycobacterium tuberculosis encodes two functional PPXs, and simultaneous deletion of ppx1 and ppx2 results in a defect in biofilm formation. We demonstrate here that these PPXs cumulatively contribute to the ability of M. tuberculosis to survive in nutrient-limiting, low-oxygen growth conditions and also in macrophages. Characterization of single (Δppx2) and double knockout (dkppx) strains of M. tuberculosis indicated that PPX-mediated PolyP degradation is essential for establishing bacterial infection in guinea pigs. RNA-Seq-based transcriptional profiling revealed that relative to the parental strain, the expression levels of DosR regulon-regulated dormancy genes were significantly reduced in the dkppx mutant strain. In concordance, we also provide evidence that PolyP inhibits the autophosphorylation activities associated with DosT and DosS sensor kinases. The results in this study uncover that enzymes involved in PolyP homeostasis play a critical role in M. tuberculosis physiology and virulence and are attractive targets for developing more effective therapeutic interventions.


Assuntos
Hidrolases Anidrido Ácido/metabolismo , Mycobacterium tuberculosis/fisiologia , Polifosfatos/metabolismo , Hidrolases Anidrido Ácido/genética , Animais , Antituberculosos/farmacologia , Proteínas de Bactérias/metabolismo , Feminino , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Cobaias , Viabilidade Microbiana/efeitos dos fármacos , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/patogenicidade , Fosfotransferases/genética , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/fisiologia , Virulência/efeitos dos fármacos
19.
Front Microbiol ; 10: 3051, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32063889

RESUMO

The increasing incident rates of drug-resistant tuberculosis (DR-TB) is a global health concern and has been further complicated by the emergence of extensive and total drug-resistant strains. Identification of new chemical entities which are compatible with first-line TB drugs, possess activity against DR-, and metabolically less active bacteria is required to tackle this epidemic. Here, we have performed phenotypic screening of a small molecule library against Mycobacterium bovis BCG and identified 24 scaffolds that exhibited MIC99 values of at least 2.5 µM. The most potent small molecule identified in our study was a nitroso containing pyrazole derivative, NSC 18725. We observed a significant reduction in viable bacilli load of starved Mycobacterium tuberculosis upon exposure to NSC 18725. The action of NSC 18725 was "synergistic" with isoniazid (INH) and "additive" with other drugs in our checkerboard assays. Structure-activity relationship (SAR) studies of the parent compound revealed that pyrazole derivatives without a functional group at fourth position lacked anti-mycobacterial activity in vitro. The derivative with para-chlorophenyl substitution at the first position of the pyrazole ring was the most active scaffold. We also demonstrate that NSC 18725 is able to induce autophagy in differentiated THP-1 macrophages. The induction of autophagy by NSC 18725 is the major mechanism for the killing of intracellular slow and fast-growing mycobacteria. Taken together, these observations support the identification of NSC 18725 as an antimycobacterial compound, which synergizes with INH, is active against non-replicative mycobacteria and induces autophagy in macrophages.

20.
Artigo em Inglês | MEDLINE | ID: mdl-30460206

RESUMO

Bacterial citrate lyase activity has been demonstrated in various eukaryotes, bacteria and archaea, underscoring their importance in energy metabolism of the cell. While the bacterial citrate lyase comprises of three different subunits, M. tuberculosis genome lacks CitD and CitF subunits of citrate lyase complex but encodes for 2 homologs of CitE subunits, Rv2498c and Rv3075c. Using temperature sensitive mycobacteriophages, we were able to generate both single and double citE mutant strains of M. tuberculosis. The survival experiments revealed increased susceptibility of the double mutant strain to oxidative stress in comparison to the parental strain. Also, simultaneous deletion of both citE1 and citE2 in M. tuberculosis genome resulted in impairment of intracellular replication in macrophages. The double mutant strain displayed reduced growth in lungs and spleens of guinea pigs. This is the first study demonstrating that M. tuberculosis critically requires CitE subunits of citrate lyase for pathogenesis. Taken together, these findings position these enzymes as potential targets for development of anti-tubercular small molecules.


Assuntos
Macrófagos/microbiologia , Complexos Multienzimáticos/metabolismo , Mycobacterium tuberculosis/enzimologia , Oxo-Ácido-Liases/metabolismo , Tuberculose/fisiopatologia , Fatores de Virulência/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Cobaias , Pulmão/microbiologia , Pulmão/patologia , Viabilidade Microbiana/efeitos dos fármacos , Modelos Teóricos , Complexos Multienzimáticos/deficiência , Mycobacterium tuberculosis/crescimento & desenvolvimento , Estresse Oxidativo , Oxo-Ácido-Liases/deficiência , Baço/microbiologia , Baço/patologia , Tuberculose/microbiologia , Tuberculose/patologia , Fatores de Virulência/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...