Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ISME J ; 17(7): 1029-1039, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37085551

RESUMO

Many insects engage in stable nutritional symbioses with bacteria that supplement limiting essential nutrients to their host. While several plant sap-feeding Hemipteran lineages are known to be simultaneously associated with two or more endosymbionts with complementary biosynthetic pathways to synthesize amino acids or vitamins, such co-obligate symbioses have not been functionally characterized in other insect orders. Here, we report on the characterization of a dual co-obligate, bacteriome-localized symbiosis in a family of xylophagous beetles using comparative genomics, fluorescence microscopy, and phylogenetic analyses. Across the beetle family Bostrichidae, most investigated species harbored the Bacteroidota symbiont Shikimatogenerans bostrichidophilus that encodes the shikimate pathway to produce tyrosine precursors in its severely reduced genome, likely supplementing the beetles' cuticle biosynthesis, sclerotisation, and melanisation. One clade of Bostrichid beetles additionally housed the co-obligate symbiont Bostrichicola ureolyticus that is inferred to complement the function of Shikimatogenerans by recycling urea and provisioning the essential amino acid lysine, thereby providing additional benefits on nitrogen-poor diets. Both symbionts represent ancient associations within the Bostrichidae that have subsequently experienced genome erosion and co-speciation with their hosts. While Bostrichicola was repeatedly lost, Shikimatogenerans has been retained throughout the family and exhibits a perfect pattern of co-speciation. Our results reveal that co-obligate symbioses with complementary metabolic capabilities occur beyond the well-known sap-feeding Hemiptera and highlight the importance of symbiont-mediated cuticle supplementation and nitrogen recycling for herbivorous beetles.


Assuntos
Besouros , Animais , Besouros/microbiologia , Filogenia , Simbiose/genética , Bactérias/genética , Insetos/microbiologia , Suplementos Nutricionais , Genoma Bacteriano
3.
Commun Biol ; 4(1): 554, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33976379

RESUMO

Glyphosate is widely used as a herbicide, but recent studies begin to reveal its detrimental side effects on animals by targeting the shikimate pathway of associated gut microorganisms. However, its impact on nutritional endosymbionts in insects remains poorly understood. Here, we sequenced the tiny, shikimate pathway encoding symbiont genome of the sawtoothed grain beetle Oryzaephilus surinamensis. Decreased titers of the aromatic amino acid tyrosine in symbiont-depleted beetles underscore the symbionts' ability to synthesize prephenate as the precursor for host tyrosine synthesis and its importance for cuticle sclerotization and melanization. Glyphosate exposure inhibited symbiont establishment during host development and abolished the mutualistic benefit on cuticle synthesis in adults, which could be partially rescued by dietary tyrosine supplementation. Furthermore, phylogenetic analyses indicate that the shikimate pathways of many nutritional endosymbionts likewise contain a glyphosate sensitive 5-enolpyruvylshikimate-3-phosphate synthase. These findings highlight the importance of symbiont-mediated tyrosine supplementation for cuticle biosynthesis in insects, but also paint an alarming scenario regarding the use of glyphosate in light of recent declines in insect populations.


Assuntos
Besouros/metabolismo , Glicina/análogos & derivados , Simbiose/fisiologia , Escamas de Animais/metabolismo , Animais , Besouros/fisiologia , Glicina/metabolismo , Glicina/farmacologia , Herbicidas , Filogenia , Ácido Chiquímico/metabolismo , Simbiose/efeitos dos fármacos , Glifosato
4.
Commun Biol ; 1: 137, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30272016

RESUMO

PIWI proteins and PIWI-interacting RNAs (piRNAs) suppress transposon activity in animals, thus protecting their genomes from detrimental insertion mutagenesis. Here, we reveal that PIWI genes and piRNAs are ubiquitously expressed in mollusks, similar to the situation in arthropods. We describe lineage-specific adaptations of transposon composition in piRNA clusters in the great pond snail and the pacific oyster, likely reflecting differential transposon activity in gastropods and bivalves. We further show that different piRNA clusters with unique transposon composition are dynamically expressed during oyster development. Finally, bioinformatics analyses suggest that different populations of piRNAs presumably bound to different PIWI paralogs participate in homotypic and heterotypic ping-pong amplification loops in a tissue- and sex-specific manner. Together with recent findings from other animal species, our results support the idea that somatic piRNA expression represents the ancestral state in metazoans.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...