Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Mol Biosci ; 9: 954087, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36237573

RESUMO

Fragile X-Syndrome (FXS) represents the most common inherited form of intellectual disability and the leading monogenic cause of Autism Spectrum Disorders. In most cases, this disease results from the absence of expression of the protein FMRP encoded by the FMR1 gene (Fragile X messenger ribonucleoprotein 1). FMRP is mainly defined as a cytoplasmic RNA-binding protein regulating the local translation of thousands of target mRNAs. Interestingly, FMRP is also able to shuttle between the nucleus and the cytoplasm. However, to date, its roles in the nucleus of mammalian neurons are just emerging. To broaden our insight into the contribution of nuclear FMRP in mammalian neuronal physiology, we identified here a nuclear interactome of the protein by combining subcellular fractionation of rat forebrains with pull- down affinity purification and mass spectrometry analysis. By this approach, we listed 55 candidate nuclear partners. This interactome includes known nuclear FMRP-binding proteins as Adar or Rbm14 as well as several novel candidates, notably Ddx41, Poldip3, or Hnrnpa3 that we further validated by target-specific approaches. Through our approach, we identified factors involved in different steps of mRNA biogenesis, as transcription, splicing, editing or nuclear export, revealing a potential central regulatory function of FMRP in the biogenesis of its target mRNAs. Therefore, our work considerably enlarges the nuclear proteins interaction network of FMRP in mammalian neurons and lays the basis for exciting future mechanistic studies deepening the roles of nuclear FMRP in neuronal physiology and the etiology of the FXS.

2.
Data Brief ; 42: 108151, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35516005

RESUMO

During brain development, synapses undergo structural rearrangements and functional changes mediated by many molecular processes including post-translational modifications by the Small Ubiquitin-like MOdifier (SUMO). To get an overview of the endogenous SUMO-modified proteins in the developing rat brain synapses, our first aim was to characterize the synaptic proteome from rat at 14 postnatal days (PND14), a period that combines intense synaptogenesis, neurotransmission and high levels of SUMO2/3-ylation. In this purpose, we isolated the synaptosomal fraction by differential centrifugation on sucrose percoll gradient and characterized the synaptosomal proteome by nanoLC-MS/MS. Our second aim was to provide a comprehensive list of the SUMO2/3-modified protein in this compartment. We thus performed an enrichment in SUMO2/3-ylated proteins from the synaptosomal fraction by denaturing immunoprecipitation using specific anti-SUMO2/3 antibodies prior to proteomics analysis. The information presented in this article complement the publication "Proteomic Identification of an Endogenous Synaptic SUMOylome in the Developing Rat Brain" [1], by focusing on the characterization of the synaptic proteome of PND14 rat brain. Altogether, these data can inform future experiments focused on studying the functional consequences of synaptic SUMOylation regarding synapses structure and function. In addition, they can provide the basis for future mechanistic studies investigating brain pathologies involving altered SUMOylation levels.

3.
Front Mol Neurosci ; 14: 780535, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34887727

RESUMO

Synapses are highly specialized structures that interconnect neurons to form functional networks dedicated to neuronal communication. During brain development, synapses undergo activity-dependent rearrangements leading to both structural and functional changes. Many molecular processes are involved in this regulation, including post-translational modifications by the Small Ubiquitin-like MOdifier SUMO. To get a wider view of the panel of endogenous synaptic SUMO-modified proteins in the mammalian brain, we combined subcellular fractionation of rat brains at the post-natal day 14 with denaturing immunoprecipitation using SUMO2/3 antibodies and tandem mass spectrometry analysis. Our screening identified 803 candidate SUMO2/3 targets, which represents about 18% of the synaptic proteome. Our dataset includes neurotransmitter receptors, transporters, adhesion molecules, scaffolding proteins as well as vesicular trafficking and cytoskeleton-associated proteins, defining SUMO2/3 as a central regulator of the synaptic organization and function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...